Regulation of Protein Synthesis by Ionizing Radiation

被引:109
作者
Braunstein, Steve [1 ]
Badura, Michelle L. [1 ]
Xi, Qiaoran [1 ]
Formenti, Silvia C. [2 ]
Schneider, Robert J. [1 ,2 ]
机构
[1] NYU, Sch Med, Dept Microbiol, New York, NY 10016 USA
[2] NYU, Sch Med, Dept Radiat Oncol, New York, NY 10016 USA
基金
美国国家卫生研究院;
关键词
FACTOR 4E-BINDING PROTEIN-1; EPIDERMAL-GROWTH-FACTOR; DOUBLE-STRAND BREAKS; KINASE PATHWAY; MAMMALIAN TARGET; TUMOR-SUPPRESSOR; EIF4E-BINDING PROTEIN; TUBEROUS SCLEROSIS; PROSTATE CARCINOMA; REPRESSOR; 4E-BP1;
D O I
10.1128/MCB.00711-09
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ionizing radiation (IR) is a physiologically important stress to which cells respond by the activation of multiple signaling pathways. Using a panel of immortalized and transformed breast epithelial cell lines, we demonstrate that IR regulation of protein synthesis occurs in nontransformed cells and is lost with transformation. In nontransformed cells, IR rapidly activates the MAP kinases ERK1/2, resulting in an early transient increase in cap-dependent mRNA translation that involves mTOR and is radioprotective, enhancing the translation of a subset of mRNAs encoding proteins involved in DNA repair and cell survival. Following a transient increase in translation, IR-sensitive (nontransformed) cells inhibit cap-dependent protein synthesis through a mechanism that involves activation of p53, induction of Sestrin 1 and 2 genes, and stimulation of AMP kinase, inhibiting mTOR and hypophosphorylating 4E-BP1. IR is shown to block proteasome-mediated decay of 4E-BP1, increasing its abundance and the sequestration of eIF4E. The IR signal that impairs mTOR-dependent protein synthesis at late times is assembly of the DNA damage response machinery, consisting of Mre11, Rad50, and NBS1 (MRN); activation of the MRN complex kinase ATM; and p53. These results link genotoxic signaling from the DNA damage response complex to the control of protein synthesis.
引用
收藏
页码:5645 / 5656
页数:12
相关论文
共 80 条
[1]   Autophagy delays apoptotic death in breast cancer cells following DNA damage [J].
Abedin, M. J. ;
Wang, D. ;
McDonnell, M. A. ;
Lehmann, U. ;
Kelekar, A. .
CELL DEATH AND DIFFERENTIATION, 2007, 14 (03) :500-510
[2]   Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer [J].
Albert, Jeffrey M. ;
Kim, Kwang Woon ;
Cao, Carolyn ;
Lu, Bo .
MOLECULAR CANCER THERAPEUTICS, 2006, 5 (05) :1183-1189
[3]  
Bhandari BK, 2001, KIDNEY INT, V59, P866
[4]   p53 target genes Sestrin1 and Sestrin2 connect genotoxic stress and mTOR signaling [J].
Budanov, Andrei V. ;
Karin, Michael .
CELL, 2008, 134 (03) :451-460
[5]   A HIERARCHY OF ATP-CONSUMING PROCESSES IN MAMMALIAN-CELLS [J].
BUTTGEREIT, F ;
BRAND, MD .
BIOCHEMICAL JOURNAL, 1995, 312 :163-167
[6]   Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells [J].
Cao, Carolyn ;
Subhawong, Ty ;
Albert, Jeffrey M. ;
Kim, Kwang Woon ;
Geng, Ling ;
Sekhar, Konjeti R. ;
Gi, Young Jin ;
Lu, Bo .
CANCER RESEARCH, 2006, 66 (20) :10040-10047
[7]   Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins [J].
Clemens, MJ .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2001, 5 (03) :221-239
[8]   Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells [J].
Connolly, Eileen ;
Braunstein, Steve ;
Formenti, Silvia ;
Schneider, Robert J. .
MOLECULAR AND CELLULAR BIOLOGY, 2006, 26 (10) :3955-3965
[9]   Regulation of the phosphorylation and integrity of protein synthesis initiation factor eIF4GI and the translational repressor 4E-BP1 by p53 [J].
Constantinou, C ;
Clemens, MJ .
ONCOGENE, 2005, 24 (30) :4839-4850
[10]   Ionizing radiation activates Erb-B receptor dependent Akt and p70 S6 kinase signaling in carcinoma cells [J].
Contessa, JN ;
Hampton, J ;
Lammering, G ;
Mikkelsen, RB ;
Dent, P ;
Valerie, K ;
Schmidt-Ullrich, RK .
ONCOGENE, 2002, 21 (25) :4032-4041