Both the N-terminal loop and wing W2 of the forkhead domain of transcription factor FoxO4 are important for DNA binding

被引:63
作者
Boura, Evzen
Silhan, Jan
Herman, Petr
Vecer, Jaroslav
Sulc, Miroslav
Teisinger, Jan
Obsilova, Veronika
Obsil, Tomas [1 ]
机构
[1] Charles Univ Prague, Fac Sci, Dept Phys & Macromol Chem, Prague 12843, Czech Republic
[2] Charles Univ Prague, Fac Sci, Dept Biochem, Prague 12843, Czech Republic
[3] Charles Univ Prague, Inst Phys, Fac Math & Phys, CR-12116 Prague, Czech Republic
[4] Acad Sci Czech Republ, Inst Physiol, CR-14220 Prague, Czech Republic
[5] Acad Sci Czech Republ, Inst Microbiol, CR-14220 Prague, Czech Republic
关键词
D O I
10.1074/jbc.M605682200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
FoxO4 belongs to the "O" subset of forkhead transcription factors, which participate in various cellular processes. The forkhead DNA binding domain (DBD) consists of three-helix bundle resting on a small antiparallel beta-sheet from which two extended loops protrude and create two wing-like structures. The wing W2 of FoxO factors contains a 14-3-3 protein-binding motif that is phosphorylated by protein kinase B in response to insulin or growth factors. In this report, we investigated the role of the N-terminal loop (portion located upstream of first helix H I) and the C-terminal region (loop known as wing W2) of the forkhead domain of transcription factor FoxO4 in DNA binding. Although the deletion of either portion partly reduces the FoxO4-DBD binding to the DNA, the simultaneous deletion of both regions inhibits DNA binding significantly. Forser resonance energy transfer measurements and molecular dynamics simulations suggest that both studied N- and C-terminal regions of FoxO4-DBD directly interact with DNA. In the presence of the N-terminal loop the protein kinase B-induced phosphorylation of wing W2 by itself has negligible effect on DNA binding. On the other hand, in the absence of this loop the phosphorylation of wing W2 significantly inhibits the FoxO4-DBD binding to the DNA. The binding of the 14-3-3 protein efficiently reduces DNA-binding potential of phosphorylated FoxO4-DBD regardless of the presence of the N-terminal loop. Our results show that both N- and C-terminal regions of forkhead domain are important for stability of the FoxO4-DBD-DNA complex.
引用
收藏
页码:8265 / 8275
页数:11
相关论文
共 52 条
[1]   FoxO: Linking new signaling pathways [J].
Arden, KC .
MOLECULAR CELL, 2004, 14 (04) :416-418
[2]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[3]   CONFORMATIONAL TRANSITIONS IN THE CALCIUM ADENOSINE-TRIPHOSPHATASE STUDIED BY TIME-RESOLVED FLUORESCENCE RESONANCE ENERGY-TRANSFER [J].
BIRMACHU, W ;
NISSWANDT, FL ;
THOMAS, DD .
BIOCHEMISTRY, 1989, 28 (09) :3940-3947
[4]   Inhibition of nuclear import by protein kinase B (Akt) regulates the subcellular distribution and activity of the forkhead transcription factor AFX [J].
Brownawell, AM ;
Kops, GJPL ;
Macara, IG ;
Burgering, BMT .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (10) :3534-3546
[5]   14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport [J].
Brunet, A ;
Kanai, F ;
Stehn, J ;
Xu, J ;
Sarbassova, D ;
Frangioni, JV ;
Dalal, SN ;
DeCaprio, JA ;
Greenberg, ME ;
Yaffe, MB .
JOURNAL OF CELL BIOLOGY, 2002, 156 (05) :817-828
[6]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[7]   Cell cycle and death control: long live Forkheads [J].
Burgering, BMT ;
Kops, GJPL .
TRENDS IN BIOCHEMICAL SCIENCES, 2002, 27 (07) :352-360
[8]   Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways [J].
Cahill, CM ;
Tzivion, G ;
Nasrin, N ;
Ogg, S ;
Dore, J ;
Ruvkun, G ;
Alexander-Bridges, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (16) :13402-13410
[9]   Forkhead transcription factors: Key players in development and metabolism [J].
Carlsson, P ;
Mahlapuu, M .
DEVELOPMENTAL BIOLOGY, 2002, 250 (01) :1-23
[10]   CO-CRYSTAL STRUCTURE OF THE HNF-3/FORK HEAD DNA-RECOGNITION MOTIF RESEMBLES HISTONE-H5 [J].
CLARK, KL ;
HALAY, ED ;
LAI, ES ;
BURLEY, SK .
NATURE, 1993, 364 (6436) :412-420