Microplasma synthesis of metal nanoparticles for gas-phase studies of catalyzed carbon nanotube growth

被引:63
作者
Chiang, Wei-Hung [1 ]
Sankaran, R. Mohan [1 ]
机构
[1] Case Western Reserve Univ, Dept Chem Engn, Cleveland, OH 44106 USA
关键词
D O I
10.1063/1.2786835
中图分类号
O59 [应用物理学];
学科分类号
摘要
Catalytic properties of metal nanoparticles toward gas-phase carbon nanotube (CNT) growth are presented. Narrow dispersions of iron (Fe) and nickel (Ni) nanoparticles are prepared in a direct current microplasma reactor and subsequently introduced with acetylene (C2H2) and hydrogen (H-2) into a heated flow furnace to catalyze CNT growth. Aerosol size classification and high-resolution transmission electron microscopy show that CNT growth occurs on Ni particles at lower temperatures than that for similarly produced Fe nanoparticles. Activation energies of 117 and 73 kJ/mol are found for Fe and Ni catalyst particles, respectively, suggesting that CNT growth occurs by carbon surface diffusion. (c) 2007 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 28 条
[1]   Gas-phase synthesis of single-wall carbon nanotubes from colloidal solution of metal nanoparticles [J].
Ago, H ;
Ohshima, S ;
Uchida, K ;
Yumura, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (43) :10453-10456
[2]   NUCLEATION AND GROWTH OF CARBON DEPOSITS FROM NICKEL CATALYZED DECOMPOSITION OF ACETYLENE [J].
BAKER, RTK ;
BARBER, MA ;
WAITE, RJ ;
HARRIS, PS ;
FEATES, FS .
JOURNAL OF CATALYSIS, 1972, 26 (01) :51-&
[3]   FURTHER-STUDIES OF THE FORMATION OF FILAMENTOUS CARBON FROM THE INTERACTION OF SUPPORTED IRON PARTICLES WITH ACETYLENE [J].
BAKER, RTK ;
CHLUDZINSKI, JJ ;
LUND, CRF .
CARBON, 1987, 25 (02) :295-303
[4]   COBALT-CATALYZED GROWTH OF CARBON NANOTUBES WITH SINGLE-ATOMIC-LAYERWALLS [J].
BETHUNE, DS ;
KIANG, CH ;
DEVRIES, MS ;
GORMAN, G ;
SAVOY, R ;
VAZQUEZ, J ;
BEYERS, R .
NATURE, 1993, 363 (6430) :605-607
[5]   Size classification of silicon nanocrystals [J].
Camata, RP ;
Atwater, HA ;
Vahala, KJ ;
Flagan, RC .
APPLIED PHYSICS LETTERS, 1996, 68 (22) :3162-3164
[6]   Diameter-controlled synthesis of carbon nanotubes [J].
Cheung, CL ;
Kurtz, A ;
Park, H ;
Lieber, CM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (10) :2429-2433
[7]   Ion-assisted precursor dissociation and surface diffusion: Enabling rapid, low-temperature growth of carbon nanofibers [J].
Denysenko, I. ;
Ostrikov, K. .
APPLIED PHYSICS LETTERS, 2007, 90 (25)
[8]   Graphitic encapsulation of catalyst particles in carbon nanotube production [J].
Ding, F ;
Rosén, A ;
Campbell, EEB ;
Falk, LKL ;
Bolton, K .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (15) :7666-7670
[9]   Temperature selective growth of carbon nanotubes by chemical vapor deposition [J].
Ducati, C ;
Alexandrou, I ;
Chhowalla, M ;
Amaratunga, GAJ ;
Robertson, J .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (06) :3299-3303
[10]   Surface diffusion:: The low activation energy path for nanotube growth -: art. no. 036101 [J].
Hofmann, S ;
Csányi, G ;
Ferrari, AC ;
Payne, MC ;
Robertson, J .
PHYSICAL REVIEW LETTERS, 2005, 95 (03)