Characterization of membrane-bound serine protease related to degradation of oxidatively damaged erythrocyte membrane proteins

被引:22
作者
Fujino, T [1 ]
Ishikawa, T [1 ]
Inoue, M [1 ]
Beppu, M [1 ]
Kikugawa, K [1 ]
机构
[1] Tokyo Univ Pharm & Life Sci, Sch Pharm, Hachioji, Tokyo 1920392, Japan
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 1998年 / 1374卷 / 1-2期
关键词
oxidative stress; membrane protein degradation; membrane-bound serine protease; oxidized protein; erythrocyte;
D O I
10.1016/S0005-2736(98)00131-X
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
It has been shown that erythrocyte membrane proteins become susceptible to degradation by membrane-bound serine protease activity after oxidative modification of the membranes (M. Beppu, M. Inoue, T. Ishikawa, K. Kikugawa, Biochim. Biophys. Acta 1196 (1994) 81-87). The aim of the present study was to clarify the presence of the serine protease in oxidized erythrocyte membranes and to characterize the selectivity of the enzyme to oxidized proteins. Human erythrocytes were oxidized in vitro with xanthine/xanthine oxidase/Fe(III) and oxidized membranes isolated. Proteolytic activity of the membranes toward spectrin obtained from oxidized membranes and bovine serum albumin oxidized with H2O2/horseradish peroxidase was increased by membrane oxidation, and the degradability of the substrates was increased by substrate oxidation. The proteolytic activity was inhibited by the serine protease inhibitor diisopropyl fluorophosphate (DFP). The 72 kDa and 80 kDa proteins in the membranes were labeled by [H-3]DFP when detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions and subsequent fluorography. The 72 kDa protein was found to be a serine enzyme, acetylcholine esterase. The 80 kDa protein appeared to be responsible for the degradation of oxidatively damaged proteins. The 80 kDa protein was loosely bound to membranes and readily solubilized into a 0.1% NP-40 detergent solution. The presence of the same 80 kDa protease in intact erythrocyte cytosol was suggested. The increased serine protease activity in oxidized membranes can result from the increased adherence of the cytosolic 80 kDa serine protease to the membranes due to oxidation. 0005-2736/98/$ - see front matter (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:47 / 55
页数:9
相关论文
共 31 条
[1]   ACETYLCHOLINESTERASE OF HUMAN ERYTHROCYTE MEMBRANE [J].
BELLHORN, MB ;
BLUMENFELD, OO ;
GALLOP, PM .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1970, 39 (02) :267-+
[2]   PRESENCE OF MEMBRANE-BOUND PROTEINASES THAT PREFERENTIALLY DEGRADE OXIDATIVELY DAMAGED ERYTHROCYTE-MEMBRANE PROTEINS AS SECONDARY ANTIOXIDANT DEFENSE [J].
BEPPU, M ;
INOUE, M ;
ISHIKAWA, T ;
KIKUGAWA, K .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1994, 1196 (01) :81-87
[3]  
BEPPU M, 1990, J BIOL CHEM, V265, P3226
[4]   LABELING OF PROTEINS TO HIGH SPECIFIC RADIOACTIVITIES BY CONJUGATION TO A I-125-CONTAINING ACYLATING AGENT - APPLICATION TO RADIOIMMUNOASSAY [J].
BOLTON, AE ;
HUNTER, WM .
BIOCHEMICAL JOURNAL, 1973, 133 (03) :529-538
[5]   MODULATION OF THE HYDROPHOBICITY OF GLUTAMINE-SYNTHETASE BY MIXED-FUNCTION OXIDATION [J].
CERVERA, J ;
LEVINE, RL .
FASEB JOURNAL, 1988, 2 (10) :2591-2595
[6]  
DAVIES K J A, 1986, Journal of Free Radicals in Biology and Medicine, V2, P155, DOI 10.1016/S0748-5514(86)80066-6
[7]  
DAVIES KJA, 1987, J BIOL CHEM, V262, P9895
[8]   DEGRADATION OF OXIDATIVELY DENATURED PROTEINS IN ESCHERICHIA-COLI [J].
DAVIES, KJA ;
LIN, SW .
FREE RADICAL BIOLOGY AND MEDICINE, 1988, 5 (04) :215-223
[9]   OXIDATIVELY DENATURED PROTEINS ARE DEGRADED BY AN ATP-INDEPENDENT PROTEOLYTIC PATHWAY IN ESCHERICHIA-COLI [J].
DAVIES, KJA ;
LIN, SW .
FREE RADICAL BIOLOGY AND MEDICINE, 1988, 5 (04) :225-236
[10]  
DAVIES KJA, 1987, J BIOL CHEM, V262, P8220