A switch for the transfer of substrate between nonribosomal peptide and polyketide modules of the rifamycin synthetase assembly line

被引:15
作者
Admiraal, SJ
Khosla, C
Walsh, CT
机构
[1] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
关键词
D O I
10.1021/ja0379060
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A nonribosomal peptide synthetase (NRPS) loading module and a polyketide synthase (PKS) elongation module catalyze the preliminary steps in the biosynthesis of the rifamycin antibiotics. A benzoate molecule is covalently attached to the phosphopantetheine arm of the thiolation domain of the loading module when its reaction partner methylmalonyl-CoA is absent. Occupancy of the thiolation domain of the elongation module by a methylmalonyl moiety appears to trigger intermodular transfer of benzoate to the ketosynthase domain of the elongation module. This transthiolation event is fast relative to the initial loading of benzoate onto the loading module. It will be of interest to determine if these results are generally true for intermodular acyl transfer in other NRPS?PKS and PKS assembly lines. Copyright © 2003 American Chemical Society.
引用
收藏
页码:13664 / 13665
页数:2
相关论文
共 13 条
[1]   The loading and initial elongation modules of rifamycin synthetase collaborate to produce mixed aryl ketide products-1 [J].
Admiraal, SJ ;
Khosla, C ;
Walsh, CT .
BIOCHEMISTRY, 2002, 41 (16) :5313-5324
[2]   The loading module of rifamycin synthetase is an adenylation-thiolation didomain with substrate tolerance for substituted benzoates [J].
Admiraal, SJ ;
Walsh, CT ;
Khosla, C .
BIOCHEMISTRY, 2001, 40 (20) :6116-6123
[3]   Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699 [J].
August, PR ;
Tang, L ;
Yoon, YJ ;
Ning, S ;
Muller, R ;
Yu, TW ;
Taylor, M ;
Hoffmann, D ;
Kim, CG ;
Zhang, XH ;
Hutchinson, CR ;
Floss, HG .
CHEMISTRY & BIOLOGY, 1998, 5 (02) :69-79
[4]   Structural mechanism for rifampicin inhibition of bacterial RNA polymerase [J].
Campbell, EA ;
Korzheva, N ;
Mustaev, A ;
Murakami, K ;
Nair, S ;
Goldfarb, A ;
Darst, SA .
CELL, 2001, 104 (06) :901-912
[5]   Biochemistry - Harnessing the biosynthetic code: Combinations, permutations, and mutations [J].
Cane, DE ;
Walsh, CT ;
Khosla, C .
SCIENCE, 1998, 282 (5386) :63-68
[6]   Hybrid peptide-polyketide natural products:: Biosynthesis and prospects toward engineering novel molecules [J].
Du, LH ;
Sánchez, C ;
Shen, B .
METABOLIC ENGINEERING, 2001, 3 (01) :78-95
[7]   Lessons from the rifamycin biosynthetic gene cluster [J].
Floss, HG ;
Yu, TW .
CURRENT OPINION IN CHEMICAL BIOLOGY, 1999, 3 (05) :592-597
[8]   Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis [J].
Keating, TA ;
Walsh, CT .
CURRENT OPINION IN CHEMICAL BIOLOGY, 1999, 3 (05) :598-606
[9]   Cloning and sequence analysis of the putative rifamycin polyketide synthase gene cluster from Amycolatopsis mediterranei [J].
Schupp, T ;
Toupet, C ;
Engel, N ;
Goff, S .
FEMS MICROBIOLOGY LETTERS, 1998, 159 (02) :201-207
[10]   Characterization of the enzymatic domains in the modular polyketide synthase involved in rifamycin B biosynthesis by Amycolatopsis mediterranei [J].
Tang, L ;
Yoon, YJ ;
Choi, CY ;
Hutchinson, CR .
GENE, 1998, 216 (02) :255-265