Asymptotic variance of M-estimators for dependent Gaussian random variables

被引:5
作者
Genton, MG [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
robustness; M-estimator; location; scale; asymptotic variance; dependent data; asymptotic efficiency;
D O I
10.1016/S0167-7152(98)00026-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper discusses the asymptotic behavior of M-estimators for dependent Gaussian random variables. We show that for a Gaussian distribution, the asymptotic variance of an M-estimator of scale is minimal in the independent case and must necessarily increase for dependent data. This is not true for location estimation where the asymptotic variance can increase or decrease for dependent observations, depending on the sign of the correlation. Several examples are analyzed, showing that the asymptotic variance of the maximum likelihood estimator varies widely under dependencies. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:255 / 261
页数:7
相关论文
共 14 条