Slow kinetics of water escape from randomly folded foils

被引:9
作者
Balankin, Alexander S. [1 ]
Matias Gutierres, S. [1 ]
Samayoa Ochoa, D. [1 ]
Patino Ortiz, J. [1 ]
Espinoza Elizarraraz, B. [1 ]
Martinez-Gonzalez, C. L. [1 ]
机构
[1] Inst Politecn Nacl, Grp Mecan Fractal, Mexico City 07738, DF, Mexico
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 03期
关键词
D O I
10.1103/PhysRevE.83.036310
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the kinetics of water escape from balls folded from square aluminum foils of different thickness and edge size. We found that the water discharge rate obeys the scaling relation Q proportional to V-P (M - M-r)(alpha) with the universal scaling exponents alpha = 3 +/- 0.1, where V-P is the volume of pore space, M(t) is the actual mass of water in the ball, and Mr is the mass of residual water. The last is found to be a power-law function of V-P. The relation of these findings to the fractal geometry of randomly folded matter is discussed.
引用
收藏
页数:4
相关论文
共 21 条
  • [1] Intrinsically anomalous roughness of randomly crumpled thin sheets
    Balankin, Alexander S.
    Susarrey Huerta, Orlando
    Montes de Oca, Rolando Cortes
    Samayoa Ochoa, Didier
    Martinez Trinidad, Jose
    Mendoza, Maribel A.
    [J]. PHYSICAL REVIEW E, 2006, 74 (06):
  • [2] Scaling properties of pinned interfaces in fractal media -: art. no. 096101
    Balankin, AS
    Susarrey, O
    Gonzáles, JM
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (09) : 4
  • [3] Bear J., 1998, Dynamics of Fluids in Porous Media. Civil and Mechanical Engineering
  • [4] Geometry of crumpled paper
    Blair, DL
    Kudrolli, A
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (16)
  • [5] Scaling of mathematical fractals and box-counting quasi-measure
    Borodich, F. M.
    Feng, Z.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (01): : 21 - 31
  • [6] BROOKS RH, 1964, HYDROLOGY PAPER, V3, P22
  • [7] A concise parameterization of the hydraulic conductivity of unsaturated soils
    Brutsaert, W
    [J]. ADVANCES IN WATER RESOURCES, 2000, 23 (08) : 811 - 815
  • [8] Capillary pressure in a porous medium with distinct pore surface and pore volume fractal dimensions
    Deinert, M. R.
    Dathe, A.
    Parlange, J-Y.
    Cady, K. B.
    [J]. PHYSICAL REVIEW E, 2008, 77 (02):
  • [9] Dimensionless scaling methods for capillary rise
    Fries, N.
    Dreyer, M.
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2009, 338 (02) : 514 - 518
  • [10] MECHANICALLY DEFORMED CRUMPLED SURFACES
    GOMES, MAF
    JYH, TI
    REN, TI
    RODRIGUES, IM
    FURTADO, CBS
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1989, 22 (08) : 1217 - 1221