Solvent-soaking treatment induced morphology evolution in P3HT/PCBM composite films

被引:81
作者
Li, Hui [1 ,2 ,3 ]
Tang, Haowei [1 ,2 ,3 ]
Li, Ligui [1 ,2 ,3 ]
Xu, Wentao [1 ,2 ,3 ]
Zhao, Xiaoli [1 ,2 ,3 ]
Yang, Xiaoniu [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, Polymer Composites Engn Lab, Changchun 130022, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
[3] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
POLYMER SOLAR-CELLS; SELF-ORGANIZATION; CHARGE-TRANSPORT; POLY(3-HEXYLTHIOPHENE); PERFORMANCE; EFFICIENCY; TRANSISTORS; MOBILITY; BLENDS;
D O I
10.1039/c1jm10148j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Morphology of the active layer has been proven to play an important role in determining the final device performance of photovoltaic devices. Herein, we present a facile mixed solvents soaking approach to tailor the morphology of the active layer, in which not only the crystallinity of poly (3-hexylthiophene) (P3HT) in its composite film with [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM) has been substantially improved, but also an interpenetrating network composed of highly crystalline P3HT and PCBM nanoaggregates is constructed as confirmed by transmission electron microscopy. Furthermore, X-ray photoelectron spectroscopy analysis reveals that P3HT chains enrich at the active layer/anode interface while more PCBM are found to present on the active layer/cathode interface along the vertical direction of the composite films, which is beneficial for charge carrier transport and will contribute to better device performance. The power conversion efficiency of the device using this method is improved to 3.23%, in contrast to 1.45% for a pristine device and 2.79% for a thermally annealed device. Therefore, this simple technique can simultaneously optimize lateral and vertical nanoscale phase separation of crystalline P3HT and PCBM, and shows high potential application in the preparation of high performance cost-effective polymer solar cells.
引用
收藏
页码:6563 / 6568
页数:6
相关论文
共 41 条
[1]   Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing [J].
Arias, AC ;
Corcoran, N ;
Banach, M ;
Friend, RH ;
MacKenzie, JD ;
Huck, WTS .
APPLIED PHYSICS LETTERS, 2002, 80 (10) :1695-1697
[2]   Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility [J].
Bao, Z ;
Dodabalapur, A ;
Lovinger, AJ .
APPLIED PHYSICS LETTERS, 1996, 69 (26) :4108-4110
[3]   Multilayer formation in spin-coated thin films of low-bandgap polyfluorene: PCBM blends [J].
Björström, CM ;
Bernasik, A ;
Rysz, J ;
Budkowski, A ;
Nilsson, S ;
Svensson, M ;
Andersson, MR ;
Magnusson, KO ;
Moons, E .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (50) :L529-L534
[4]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P15, DOI 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO
[5]  
2-A
[6]   LIGHT-EMITTING-DIODES BASED ON CONJUGATED POLYMERS [J].
BURROUGHES, JH ;
BRADLEY, DDC ;
BROWN, AR ;
MARKS, RN ;
MACKAY, K ;
FRIEND, RH ;
BURN, PL ;
HOLMES, AB .
NATURE, 1990, 347 (6293) :539-541
[7]   Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends [J].
Campoy-Quiles, Mariano ;
Ferenczi, Toby ;
Agostinelli, Tiziano ;
Etchegoin, Pablo G. ;
Kim, Youngkyoo ;
Anthopoulos, Thomas D. ;
Stavrinou, Paul N. ;
Bradley, Donal D. C. ;
Nelson, Jenny .
NATURE MATERIALS, 2008, 7 (02) :158-164
[8]   Structural effects in poly(3-alkylthiophene)s on the exposition to poor solvent [J].
Caronna, T ;
Catellani, M ;
Luzzati, S ;
Meille, SV ;
Romita, V .
MACROMOLECULAR RAPID COMMUNICATIONS, 1997, 18 (10) :939-943
[9]   Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents [J].
Chang, JF ;
Sun, BQ ;
Breiby, DW ;
Nielsen, MM ;
Sölling, TI ;
Giles, M ;
McCulloch, I ;
Sirringhaus, H .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4772-4776
[10]   A Simple Route for the Preparation of Mesoporous Nanostructures Using Block Copolymers [J].
Chen, Dian ;
Park, Soojin ;
Chen, Jiun-Tai ;
Redston, Emily ;
Russell, Thomas P. .
ACS NANO, 2009, 3 (09) :2827-2833