apoptosis;
DNA repair;
oxidative stress;
survival pathways;
transcription factor;
tumorigenesis;
D O I:
10.1038/cdd.2008.33
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Depending on multiple factors DNA damage leads either to cell cycle arrest or apoptosis. One of the main players deciding the fate of a cell is the tumor suppressor p53 that modulates these responses in a transcription-dependent and -independent manner. Over the past few years, however, strong evidence accumulated that p53 engages also powerful pro-survival pathways by transcriptionally activating a multitude of genes whose products efficiently counteract apoptosis. Our review summarizes the current knowledge concerning approximately forty p53-regulated proteins that exert their anti-apoptotic potential by interfering with diverse cellular processes. These activities are surely essential for normal development and maintenance of a healthy organism, but may easily turn into the dark side of the tumor suppressor p53 contributing to tumorigenesis.