Quasilinearization method for nonlinear elliptic boundary-value problems

被引:7
作者
Buica, A [1 ]
机构
[1] Babes Bolyai Univ, Cluj Napoca, Romania
关键词
elliptic boundary-value problem; nonlinear boundary-value problems; strong solutions; lower and upper solutions; approximations; quasilinearization;
D O I
10.1007/s10957-004-0928-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The quasilinearization method is developed for strong solutions of semilinear and nonlinear elliptic boundary-value problems. We obtain two monotone, L-p-convergent sequences of approximate solutions. The order of convergence is two. The tools are some results on the abstract quasilinearization method and from weakly-near operators theory.
引用
收藏
页码:323 / 338
页数:16
相关论文
共 16 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
[Anonymous], 1998, TOPOL METHOD NONL AN, DOI DOI 10.12775/TMNA.1998.007
[3]   Nearness, accretivity, and the solvability of nonlinear equations [J].
Buica, A ;
Domokos, A .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2002, 23 (5-6) :477-493
[4]  
BUICA A, 2001, COINCIDENCE PRIPNCIP
[5]  
BUICA A, 2001, SEM FIX POINT THEOR, V2, P65
[6]  
BUICA A, 2002, NONLINEAR STUD, V9, P371
[7]  
Campanato Sergio, 1993, MATEMATICHE, V48, P183
[8]   Generalized quasilinearization for quasilinear parabolic equations with nonlinearities of DC type [J].
Carl S. ;
Lakshmikantham V. .
Journal of Optimization Theory and Applications, 2001, 109 (01) :27-50
[9]  
COMPANATO S, 1989, RENDICONTI ACCADEMIA, V107, P307
[10]   Implicit function theorems for m-accretive and locally accretive set-valued mappings [J].
Domokos, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (1-2) :221-241