A coarse-grained model for double-helix molecules in solution: Spontaneous helix formation and equilibrium properties

被引:59
作者
Tepper, HL
Voth, GA
机构
[1] Univ Utah, Ctr Biophys Modeling & Simulat, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA
关键词
D O I
10.1063/1.1869417
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new reductionist coarse-grained model is presented for double-helix molecules in solution. As with such models for lipid bilayers and micelles, the level of description is both particulate and mesoscopic. The particulate (bead-and-spring) nature of the model makes for a simple implementation in standard molecular dynamics simulation codes and allows for investigation of thermomechanic properties without preimposing any (form of) response function. The mesoscopic level of description-where groups of atoms are condensed into coarse-grained beads-causes long-range interactions to be effectively screened, which greatly enhances the efficiency and scalability of simulations. Without imposing local or global order parameters, a linear initial configuration of the model molecule spontaneously assembles into a double helix due to the interplay between three contributions: hydrophobic/hydrophilic interactions between base pairs, backbone, and solvent; phosphate-phosphate repulsion along the backbone; and favorable base-pair stacking energy. We present results for the process of helix formation as well as for the equilibrium properties of the final state, and investigate how both depend on the input parameters. The current model holds promise for two routes of investigation: First, within a limited set of generic parameters, the effect of local (atomic-scale) perturbations on overall helical properties can be systematically studied. Second, since the efficiency allows for a direct simulation of both small and large (>100 base pairs) systems, the model presents a testground for systematic coarse-graining methods.
引用
收藏
页数:11
相关论文
共 52 条
[1]  
Allen M. P., 2009, Computer Simulation of Liquids
[2]  
[Anonymous], 1998, NONLINEAR PHYS DNA
[3]   Elastic rod model of a DNA loop in the lac operon [J].
Balaeff, A ;
Mahadevan, L ;
Schulten, K .
PHYSICAL REVIEW LETTERS, 1999, 83 (23) :4900-4903
[4]   Nucleic acids: theory and computer simulation, Y2K [J].
Beveridge, DL ;
McConnell, KJ .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2000, 10 (02) :182-196
[5]   Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides.: I.: Research design and results on d(CpG) steps [J].
Beveridge, DL ;
Barreiro, G ;
Byun, KS ;
Case, DA ;
Cheatham, TE ;
Dixit, SB ;
Giudice, E ;
Lankas, F ;
Lavery, R ;
Maddocks, JH ;
Osman, R ;
Seibert, E ;
Sklenar, H ;
Stoll, G ;
Thayer, KM ;
Varnai, P ;
Young, MA .
BIOPHYSICAL JOURNAL, 2004, 87 (06) :3799-3813
[6]   Elasticity model of a supercoiled DNA molecule [J].
Bouchiat, C ;
Mezard, M .
PHYSICAL REVIEW LETTERS, 1998, 80 (07) :1556-1559
[7]   Structural transitions and elasticity from torque measurements on DNA [J].
Bryant, Z ;
Stone, MD ;
Gore, J ;
Smith, SB ;
Cozzarelli, NR ;
Bustamante, C .
NATURE, 2003, 424 (6946) :338-341
[8]   ENTROPIC ELASTICITY OF LAMBDA-PHAGE DNA [J].
BUSTAMANTE, C ;
MARKO, JF ;
SIGGIA, ED ;
SMITH, S .
SCIENCE, 1994, 265 (5178) :1599-1600
[9]  
Calladine C. R., 1997, Understanding DNA: The Molecule and How It Works, V2nd ed.
[10]   Molecular dynamics simulation of nucleic acids [J].
Cheatham, TE ;
Kollman, PA .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2000, 51 :435-471