Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure

被引:247
作者
Minamishima, Yoji Andrew [1 ,2 ]
Moslehi, Javid [1 ,2 ,3 ]
Bardeesy, Nabeel [4 ]
Cullen, Darragh [3 ]
Bronson, Roderick T. [5 ]
Kaelin, William G., Jr. [1 ,2 ,6 ]
机构
[1] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Med Oncol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dana Farber Canc Inst, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Brigham & Womens Hosp, Div Cardiovasc Med,Dept Med, Boston, MA 02115 USA
[4] Harvard Univ, Sch Med, Ctr Canc, Massachusetts Gen Hosp, Boston, MA 02115 USA
[5] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA
[6] Howard Hughes Med Inst, Chevy Chase, MD USA
关键词
D O I
10.1182/blood-2007-10-117812
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Pharmacologic activation of the heterodimeric HIF transcription factor appears promising as a strategy to treat diseases, such as anemia, myocardial infarction, and stroke, in which tissue hypoxia is a prominent feature. HIF accumulation is normally linked to oxygen availability because an oxygen-dependent posttranslational modification (prolyl hydroxylation) marks the HIF alpha subunit for polyubiquitination and destruction. Three enzymes (PHD1, PHD2, and PHD3) capable of catalyzing this reaction have been identified, although PHD2 (also called Egln1) appears to be the primary HIF prolyl hydroxylase in cell culture experiments. We found that conditional inactivation of PHD2 in mice is sufficient to activate a subset of HIF target genes, including erythropoietin, leading to striking increases in red blood cell production. Mice lacking PHD2 exhibit premature mortality associated with marked venous congestion and dilated cardiomyopathy. The latter is likely the result of hyperviscosity syndrome and volume overload, although a direct effect of chronic, high-level HIF stimulation on cardiac myocytes cannot be excluded.
引用
收藏
页码:3236 / 3244
页数:9
相关论文
共 49 条
[1]   Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor [J].
Appelhoff, RJ ;
Tian, YM ;
Raval, RR ;
Turley, H ;
Harris, AL ;
Pugh, CW ;
Ratcliffe, PJ ;
Gleadle, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (37) :38458-38465
[2]   Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors [J].
Aprelikova, O ;
Chandramouli, GVR ;
Wood, M ;
Vasselli, JR ;
Riss, J ;
Maranchie, JK ;
Linehan, WM ;
Barrett, JC .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2004, 92 (03) :491-501
[3]   Neuron-specific inactivation of the hypoxia inducible factor 1α increases brain injury in a mouse model of transient focal cerebral ischemia [J].
Baranova, Oxana ;
Miranda, Luis F. ;
Pichiule, Paola ;
Dragatsis, Ioannis ;
Johnson, Randall S. ;
Chavez, Juan C. .
JOURNAL OF NEUROSCIENCE, 2007, 27 (23) :6320-6332
[4]   Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation [J].
Bardeesy, N ;
Sinha, M ;
Hezel, AF ;
Signoretti, S ;
Hathaway, NA ;
Sharpless, NE ;
Loda, M ;
Carrasco, DR ;
DePinho, RA .
NATURE, 2002, 419 (6903) :162-167
[5]   Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain [J].
Bernaudin, M ;
Nedelec, AS ;
Divoux, D ;
MacKenzie, ET ;
Petit, E ;
Schumann-Bard, P .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2002, 22 (04) :393-403
[6]   HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia [J].
Berra, E ;
Benizri, E ;
Ginouvès, A ;
Volmat, V ;
Roux, D ;
Pouysségur, J .
EMBO JOURNAL, 2003, 22 (16) :4082-4090
[7]   Cell-specific regulation of hypoxia-inducible factor (HIF)-1α and HIF-2α stabilization and transactivation in a graded oxygen environment [J].
Bracken, Cameron P. ;
Fedele, Anthony O. ;
Linke, Sarah ;
Balrak, Wiltiana ;
Lisy, Karolina ;
Whitelaw, Murray L. ;
Peet, Daniel J. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (32) :22575-22585
[8]   A conserved family of prolyl-4-hydroxylases that modify HIF [J].
Bruick, RK ;
McKnight, SL .
SCIENCE, 2001, 294 (5545) :1337-1340
[9]   The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-α [J].
Dayan, F ;
Roux, D ;
Brahimi-Horn, MC ;
Pouyssegur, J ;
Mazure, NM .
CANCER RESEARCH, 2006, 66 (07) :3688-3698
[10]  
DOOLEY TP, 1989, DEVELOPMENT, V107, P945