Upper bound of the accessible information and lower bound of the Bayes cost in quantum signal-detection processes

被引:10
作者
Ban, M [1 ]
Osaki, M [1 ]
Hirota, O [1 ]
机构
[1] TAMAGAWA UNIV, RES CTR QUANTUM COMMUN, MACHIDA, TOKYO 194, JAPAN
关键词
D O I
10.1103/PhysRevA.54.2718
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Upper bound of the accessible information and lower bound of the Bayes cost in quantum detection processes for Gaussian state signals under the influence of thermal noise are derived by means of the superoperator representation of quantum stales. It is shown that the upper and lower bounds are obtained by replacing the parameters of the signal quantum state with the renormalized parameters including the thermal noise effects in the accessible information and the minimum value of the Bayes cost in quantum detection processes in thr absence of thermal noise. Analytic expressions of the upper and lower bounds are given for several quantum state signals.
引用
收藏
页码:2718 / 2727
页数:10
相关论文
共 45 条
[1]   A GENERAL FORMULATION OF NONEQUILIBRIUM THERMO FIELD-DYNAMICS [J].
ARIMITSU, T ;
UMEZAWA, H .
PROGRESS OF THEORETICAL PHYSICS, 1985, 74 (02) :429-432
[2]  
ARIMITSU T, 1987, PROG THEOR PHYS, V77, P53, DOI 10.1143/PTP.77.53
[3]   NONEQUILIBRIUM THERMO FIELD-DYNAMICS [J].
ARIMITSU, T ;
UMEZAWA, H .
PROGRESS OF THEORETICAL PHYSICS, 1987, 77 (01) :32-52
[4]   SU(1,1) LIE ALGEBRAIC APPROACH TO LINEAR DISSIPATIVE PROCESSES IN QUANTUM OPTICS [J].
BAN, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (09) :3213-3228
[5]   LIE-ALGEBRA METHODS IN QUANTUM OPTICS - THE LIOUVILLE-SPACE FORMULATION [J].
BAN, M .
PHYSICAL REVIEW A, 1993, 47 (06) :5093-5119
[6]  
BAN M, IN PRESS J MOD OPT
[7]   DECOMPOSITION FORMULAS FOR SU(1,1) AND SU(2) LIE-ALGEBRAS AND THEIR APPLICATIONS IN QUANTUM OPTICS [J].
BAN, MS .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1993, 10 (08) :1347-1359
[8]   OBTAINMENT OF THERMAL NOISE FROM A PURE QUANTUM STATE - COMMENT [J].
BARNETT, SM ;
KNIGHT, PL .
PHYSICAL REVIEW A, 1988, 38 (03) :1657-1658
[9]  
BARNETT SM, 1994, J MOD OPT, V41
[10]  
Belavkin V. P., 1975, Stochastics, V1, P315, DOI 10.1080/17442507508833114