A nonlinear dynamics perspective of Wolfram's new kind of science.: Part IV:: From Bernoulli shift to 1/f spectrum

被引:54
作者
Chua, LO [1 ]
Sbitnev, VI [1 ]
Yoon, S [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2005年 / 15卷 / 04期
基金
美国国家科学基金会;
关键词
cellular neural networks; CNN; cellular automata; Turing machine; universal computation; Green's function; Bernoulli shift; 1/f power spectrum; global equivalence classes; CA attractors; invariant orbits; garden of Eden; isle of Eden;
D O I
10.1142/S0218127405012995
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By exploiting the new concepts of CA characteristic functions and their associated attractor time-tau maps, a complete characterization of the long-term time-asymptotic behaviors of all 256 one-dimensional CA rules are achieved via a single "probing" random input signal. In particular, the graphs of the time-1 maps of the 256 CA rules represent, in some sense, the generalized Green's functions for Cellular Automata. The asymptotic dynamical evolution on any CA attractor, or invariant orbit, of 206 (out of 256) CA rules can be predicted precisely, by inspection. In particular, a total of 112 CA rules are shown to obey a generalized Bernoulli sigma(tau)-shift rule, which involves the shifting of any binary string on an attractor, or invariant orbit, either to the left, or to the right, by up to 3 pixels, and followed possibly by a complementation of the resulting bit string.
引用
收藏
页码:1045 / 1183
页数:139
相关论文
共 21 条
[1]  
[Anonymous], 1974, Differential Equations, Dynamical Systems, and Linear Algebra
[2]  
[Anonymous], 1996, Chaos: An Introduction to Dynamical Systems, DOI DOI 10.1007/0-387-22492-0_3
[3]  
Billingsley P., 1978, ERGODIC THEORY INFOR
[4]   SECTION-WISE PIECEWISE-LINEAR FUNCTIONS - CANONICAL REPRESENTATION, PROPERTIES, AND APPLICATIONS [J].
CHUA, LO ;
KANG, SM .
PROCEEDINGS OF THE IEEE, 1977, 65 (06) :915-929
[5]   A nonlinear dynamics perspective of Wolfram's new kind of science. Part III: Predicting the unpredictable [J].
Chua, LO ;
Sbitnev, VI ;
Yoon, S .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (11) :3689-3820
[6]   A nonlinear dynamics perspective of Wolfram's new kind of science. Part II: Universal neuron [J].
Chua, LO ;
Sbitnev, VI ;
Yoon, S .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (09) :2377-2491
[7]   A nonlinear dynamics perspective of Wolfram's new kind of science. Part I: Threshold of complexity [J].
Chua, LO ;
Yoon, S ;
Dogaru, R .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (12) :2655-2766
[8]  
Chua LO, 1998, CNN: A Paradigm for Complexity
[9]  
CHUA LO, 2002, CELLULAR NEURLA NETW
[10]  
Desoer C. A., 1987, LINEAR NONLINEAR CIR