In many vision problems, we want to infer two (or more) hidden factors which interact to produce our observations. We may want to disentangle illuminant and object colors in color constancy; rendering conditions from surface shape in shape-from-shading; face identity and head pose in face recognition; or font and letter class in character recognition. We refer to these two factors generically as ''style'' and ''content''. Bilinear models offer a powerful framework for extracting the two-factor structure of a set of observations, and are familiar in computational vision from several well-known lines of research. This paper shows how bilinear models can be used to learn the style-content structure of a pattern analysis or synthesis problem, which can then be generalized to solve related tasks using different styles and/or content. We focus on three tasks: extrapolating the style of data to unseen content classes, classifying data with known content under a novel style, and translating data from novel content classes and style to a known style or content. We show examples from color constancy, face pose estimation, shape-from-shading, typography and speech.