Transcription factor GATA-4 plays critical roles in controlling heart development and cardiac hypertrophy. To understand how GATA-4 functions under diverse conditions, we sought to identify its coactivators. We tested p300 as a coactivator in GATA-4-dependent transient transcription assays in NIH3T3 cells and found that p300 synergistically activated GATA-4-dependent transcription on both synthetic and natural promoters. Direct physical interactions between the Nand C-zinc finger domains of GATA-4 and the cysteine/ histidine-rich region 3 (C/H3) of p300 were identified in immunoprecipitation and glutathione S-transferase pull-down experiments. Deletion of the C/H3 region of p300 abolished its coactivator activity indicating that the physical interaction was required for functional synergy. Through the use of a series of GATA-4 zinc ringer mutants, the amino acids WRR in the C finger were identified as critical to the interaction. The adenoviral E1A protein or a peptide encoding the C/H3 region of p300 could inhibit GATA-4-dependent transcription, presumably by competing for p300 binding. Furthermore, deletion of the region of p300 encoding the histone acetyltransferase activity abolished its effect on GATA-4-dependent transcriptional activity. These results establish that p300 acts as a GATA-4 coactivator and that the p300 histone acetyltransferase activity is necessary for the functional interaction.