Cation-dependent stability of subtilisin

被引:42
作者
Alexander, PA [1 ]
Ruan, B [1 ]
Bryan, PN [1 ]
机构
[1] Univ Maryland, Inst Biotechnol, Ctr Adv Res Biotechnol, Rockville, MD 20850 USA
关键词
D O I
10.1021/bi010797m
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Subtilisin BPN ' contains two cation binding sites. One specifically binds calcium (site A), and the other can bind both divalent and monovalvent metals (site B). By binding at specific sites in the tertiary structure of subtilisin, cations contribute their binding energy to the stability of the native state and increase the activation energy of unfolding. Deconvoluting the influence of binding sites A and B on the inactivation rate of subtilisin is complicated, however. This paper examines the stabilizing effects of cation binding at site B by using a mutant of subtilisin BPN ' which lacks calcium site A. Using this mutant, we show that calcium binding at site B has relatively little effect on stability in the presence of moderate concentrations of monovalent cations. At [NaCl] = 100 mM, site B is greater than or equal to 98% occupied with sodium, and therefore its net occupancy with a cation varies little as subtilisin is titrated with calcium. Exchanging sodium for calcium results in a 5-fold decrease in the rate of inactivation. In contrast, because of the high selectivity of site A for calcium, its occupancy changes dramatically as calcium concentration is varied, and consequently the inactivation rate of subtilisin decreases similar to 200-fold as site A becomes saturated with calcium, irrespective of the concentration of monovalent cations.
引用
收藏
页码:10634 / 10639
页数:6
相关论文
共 34 条
[1]   ENGINEERING SUBTILISIN AND ITS SUBSTRATES FOR EFFICIENT LIGATION OF PEPTIDE-BONDS IN AQUEOUS-SOLUTION [J].
ABRAHMSEN, L ;
TOM, J ;
BURNIER, J ;
BUTCHER, KA ;
KOSSIAKOFF, A ;
WELLS, JA .
BIOCHEMISTRY, 1991, 30 (17) :4151-4159
[2]   Stabilizing mutations and calcium-dependent stability of subtilisin [J].
Alexander, PA ;
Ruan, B ;
Strausberg, SL ;
Bryan, PN .
BIOCHEMISTRY, 2001, 40 (35) :10640-10644
[3]  
Almog O, 1998, PROTEINS, V31, P21, DOI 10.1002/(SICI)1097-0134(19980401)31:1<21::AID-PROT3>3.0.CO
[4]  
2-K
[5]   ENTHALPIC AND ENTROPIC CONTRIBUTIONS TO ACTIN STABILITY - CALORIMETRY, CIRCULAR-DICHROISM, AND FLUORESCENCE STUDY AND EFFECTS OF CALCIUM [J].
BERTAZZON, A ;
TIAN, GH ;
LAMBLIN, A ;
TSONG, TY .
BIOCHEMISTRY, 1990, 29 (01) :291-298
[6]   CRYSTAL-STRUCTURE OF THE ALKALINE PROTEINASE SAVINASE FROM BACILLUS-LENTUS AT 1.4-A RESOLUTION [J].
BETZEL, C ;
KLUPSCH, S ;
PAPENDORF, G ;
HASTRUP, S ;
BRANNER, S ;
WILSON, KS .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 223 (02) :427-445
[7]   THERMITASE AND PROTEINASE-K - A COMPARISON OF THE REFINED 3-DIMENSIONAL STRUCTURES OF THE NATIVE ENZYMES [J].
BETZEL, C ;
TEPLYAKOV, AV ;
HARUTYUNYAN, EH ;
SAENGER, W ;
WILSON, KS .
PROTEIN ENGINEERING, 1990, 3 (03) :161-172
[8]   THE HIGH-RESOLUTION X-RAY CRYSTAL-STRUCTURE OF THE COMPLEX FORMED BETWEEN SUBTILISIN CARLSBERG AND EGLIN-C, AN ELASTASE INHIBITOR FROM THE LEECH HIRUDO-MEDICINALIS - STRUCTURAL-ANALYSIS, SUBTILISIN STRUCTURE AND INTERFACE GEOMETRY .2. [J].
BODE, W ;
PAPAMOKOS, E ;
MUSIL, D .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1987, 166 (03) :673-692
[9]   INCORPORATION OF A STABILIZING CA2+-BINDING LOOP INTO SUBTILISIN BPN' [J].
BRAXTON, S ;
WELLS, JA .
BIOCHEMISTRY, 1992, 31 (34) :7796-7801
[10]   ENERGETICS OF FOLDING SUBTILISIN BPN' [J].
BRYAN, P ;
ALEXANDER, P ;
STRAUSBERG, S ;
SCHWARZ, F ;
LAN, W ;
GILLILAND, G ;
GALLAGHER, DT .
BIOCHEMISTRY, 1992, 31 (21) :4937-4945