A microtiter plate assay for polyglutamine aggregate extension

被引:22
作者
Berthelier, V [1 ]
Hamilton, JB [1 ]
Chen, SM [1 ]
Wetzel, R [1 ]
机构
[1] Univ Tennessee, Med Ctr, Grad Sch Med, Knoxville, TN 37920 USA
关键词
D O I
10.1006/abio.2001.5217
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Polyglutamine (polyGln) aggregates are neuropathological markers of expanded CAG repeat disorders, and may also play a critical role in the development of these diseases. We have established a highly sensitive, fast, reproducible, and specific assay capable of monitoring aggregate-dependent deposition of polyglutamine peptides. This assay allows detailed studies on various aspects of aggregation kinetics, and also makes possible the detection and quantitation of low levels of "extension-competent" aggregates. In the simplest form of this assay, polyGln aggregates are made from chemically synthesized peptides and immobilized onto microplate wells. These wells are incubated for different times with low concentrations of a soluble biotinylated polyGln peptide. Europium-streptavidin complexation of the immobilized biotin, followed by time-resolved fluorescence detection of the deposited europium, allows us to calculate the rate (fmol/h) of incorporation of polyGln peptides into polyGln aggregates. This assay will make possible basic studies on the assembly mechanism of polyGln aggregates and on critical features of the reaction, such as polyGln length dependence. The assay also will be a valuable tool for screening and characterizing antiaggregation inhibitors. It will also be useful for detection and quantitation of aggregation-competent polyGln aggregates in biological materials, which may prove to be of critical importance in understanding the disease mechanism. (C) 2001 Academic Press.
引用
收藏
页码:227 / 236
页数:10
相关论文
共 43 条
[1]   Bacterial and yeast chaperones reduce both aggregate formation and cell death in mammalian cell models of Huntington's disease [J].
Carmichael, J ;
Chatellier, J ;
Woolfson, A ;
Milstein, C ;
Fersht, AR ;
Rubinsztein, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (17) :9701-9705
[2]   Altered neurotransmitter receptor expression in transgenic mouse models of Huntington's disease [J].
Cha, JHJ ;
Frey, AS ;
Alsdorf, SA ;
Kerner, JA ;
Kosinski, CM ;
Mangiarini, L ;
Penney, JB ;
Davies, SW ;
Bates, GP ;
Young, AB .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1999, 354 (1386) :981-989
[3]   Evidence for proteasome involvement in polyglutamine disease:: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro [J].
Chai, YH ;
Koppenhafer, SL ;
Shoesmith, SJ ;
Perez, MK ;
Paulson, HL .
HUMAN MOLECULAR GENETICS, 1999, 8 (04) :673-682
[4]  
CHEN S, 2001, IN PRESS J MOL BIOL
[5]   Solubilization and disaggregation of polyglutamine peptides [J].
Chen, SM ;
Wetzel, R .
PROTEIN SCIENCE, 2001, 10 (04) :887-891
[6]   Tissue transglutaminase does not contribute to the formation of mutant Huntingtin aggregates [J].
Chun, WJ ;
Lesort, M ;
Tucholski, J ;
Ross, CA ;
Johnson, GVW .
JOURNAL OF CELL BIOLOGY, 2001, 153 (01) :25-34
[7]   Fourteen and counting: unraveling trinucleotide repeat diseases [J].
Cummings, CJ ;
Zoghbi, HY .
HUMAN MOLECULAR GENETICS, 2000, 9 (06) :909-916
[8]   Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation [J].
Davies, SW ;
Turmaine, M ;
Cozens, BA ;
DiFiglia, M ;
Sharp, AH ;
Ross, CA ;
Scherzinger, E ;
Wanker, EE ;
Mangiarini, L ;
Bates, GP .
CELL, 1997, 90 (03) :537-548
[9]  
DIAMANDIS EP, 1988, CLIN BIOCHEM, V21, P139, DOI 10.1016/0009-9120(88)90001-X
[10]   Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain [J].
DiFiglia, M ;
Sapp, E ;
Chase, KO ;
Davies, SW ;
Bates, GP ;
Vonsattel, JP ;
Aronin, N .
SCIENCE, 1997, 277 (5334) :1990-1993