An in situ X-ray absorption spectroscopy study of InSb electrodes in lithium batteries

被引:31
作者
Kropf, AJ
Tostmann, H
Johnson, CS
Vaughey, JT
Thackeray, MM
机构
[1] Argonne Natl Lab, Div Chem Technol, Argonne, IL 60439 USA
[2] Univ Florida, Dept Chem, Gainesville, FL 32611 USA
关键词
lithium batteries; in situ EXAFS; indium-antimony/antimonide; intermetallic;
D O I
10.1016/S1388-2481(01)00152-7
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We present a detailed in situ extended X-ray absorption fine-structure spectroscopy (EXAFS) study of structural and compositional changes in InSb intermetallic electrodes under electrochemical cycling conditions in a lithium battery. Analysis of the EXAFS data shows that Li is inserted into and In is extruded from the zinc-blende-type InSb network during the first discharge from 1.5 to 0.5 V. yielding changing Lix+vIn1-vSb compositions (0 < x <less than or equal to> 2, 0 < y <less than or equal to> 1), with a lattice parameter that varies between that of InSb (a = 6.478 Angstrom) and Li3Sb (a = 6.572 Angstrom). The structural features of tetragonal metallic In and lithiated (i.e., In depleted) InSb are evident. The fully recharged electrode, at 1.2 V, has a zinc-blende framework closely resembling InSb. However, 40% of the In remains permanently outside the face-centered-cubic Sb lattice, explaining a loss in capacity after the first discharge. After the second discharge, at 0.51 V, Li has replaced about 80% of the indium in the InSb lattice, while the LixInxSb volume has expanded less than 4% compared to the initial electrode. Finally, as the cell is discharged below 0.51 V, Li reacts with the In metal, forming LiIn. Our results indicate that intermetallic electrodes are promising alternative negative electrodes for Li batteries. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:244 / 251
页数:8
相关论文
共 22 条
  • [1] Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure
    Ankudinov, AL
    Ravel, B
    Rehr, JJ
    Conradson, SD
    [J]. PHYSICAL REVIEW B, 1998, 58 (12): : 7565 - 7576
  • [2] [Anonymous], 1974, STRUCTURE ELEMENTS
  • [3] BENEDEK R, UNPUB J POWER SOURCE
  • [4] BENEDEK R, IN PRESS J POWER SOU
  • [5] Brauer G, 1937, Z PHYS CHEM B-CHEM E, V37, P323
  • [6] INTERCALATION OF LITHIUM IN INSB
    HERREN, G
    DERECA, NEW
    [J]. SOLID STATE IONICS, 1991, 47 (1-2) : 57 - 61
  • [7] HEWITT KC, 2000, 198 EL SOC M PHOEN A
  • [8] Huggins R.A., 1999, HDB BATTERY MAT, P359
  • [9] HUGGINS RA, 1986, P INT WORKSH HIGH TE, pS22
  • [10] Electrochemistry and in-situ X-ray diffraction of InSb in lithium batteries
    Johnson, CS
    Vaughey, JT
    Thackeray, MM
    Sarakonsri, T
    Hackney, SA
    Fransson, L
    Edström, K
    Thomas, JO
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2000, 2 (08) : 595 - 600