Early postnatal lethality and cardiovascular defects in CXCR7-deficient mice

被引:120
作者
Gerrits, Han [1 ]
Schenau, Dorette S. van Ingen [2 ]
Bakker, Nicole E. C. [1 ]
van Disseldorp, Ad J. M. [2 ]
Strik, Ankie [1 ]
Hermens, Laura S. [1 ]
Koenen, Tim B. [1 ]
Krajnc-Franken, Magda A. M. [2 ]
Gossen, Jan A. [1 ]
机构
[1] NV Organon, Target Discovery, NL-5340 BH Oss, Netherlands
[2] NV Organon, Dept Pharmacol, NL-5340 BH Oss, Netherlands
关键词
CXCR7; RDC1; mouse; knockout; cardiovascular; bone;
D O I
10.1002/dvg.20387
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
CXCR7 is a G-protein coupled receptor that was recently deorphanized and shown to have SDF1 and I-TAC as high affinity ligands. Here we describe the characterization of CXCR7-deficient mice that were generated to further investigate the function of this receptor in vivo. Expression analysis using a LacZ reporter knockin revealed that postnatally Cxcr7 was specifically expressed in cardiomyocytes, vascular endothelial cells of the lung and heart, the cerebral cortex and in osteocytes of the bone. Adult tissues revealed high expression in cardiomyocytes and osteocytes. The observation that 70% of the Cxcr7(-/-) mice died in the first week after birth coincides with expression of Cxcr7 in vascular endothelial cells and in cardiomyocytes. An important role of CXCR7 in the cardiovascular system was further supported by the observation that hearts of the Cxcr7(-/-) mice were enlarged, showed myocardial degeneration and fibrosis of postnatal origin, and hyperplasia of embryonic origin. Despite high expression in osteocytes no apparent bone phenotype was observed, neither in combination with ovariectomy nor orchidectomy. Thus as CXCR7 does not seem to play an important role in bone our data indicate an important function of CXCR7 in the cardiovascular system during multiple steps of development.
引用
收藏
页码:235 / 245
页数:11
相关论文
共 39 条
[1]   FUNCTION OF OSTEOCYTES IN BONE [J].
AARDEN, EM ;
BURGER, EH ;
NIJWEIDE, PJ .
JOURNAL OF CELLULAR BIOCHEMISTRY, 1994, 55 (03) :287-299
[2]   Stromal cell-derived factor-1α plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury [J].
Abbott, JD ;
Huang, Y ;
Liu, D ;
Hickey, R ;
Krause, DS ;
Giordano, FJ .
CIRCULATION, 2004, 110 (21) :3300-3305
[3]   Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1) [J].
Ara, T ;
Nakamura, Y ;
Egawa, T ;
Sugiyama, T ;
Abe, K ;
Kishimoto, T ;
Matsui, Y ;
Nagasawa, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :5319-5323
[4]   Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy [J].
Askari, AT ;
Unzek, S ;
Popovic, ZB ;
Goldman, CK ;
Forudi, F ;
Kiedrowski, M ;
Rovner, A ;
Ellis, SG ;
Thomas, JD ;
DiCorleto, PE ;
Topol, EJ ;
Penn, MS .
LANCET, 2003, 362 (9385) :697-703
[5]   The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes [J].
Balabanian, K ;
Lagane, B ;
Infantino, S ;
Chow, KYC ;
Harriague, J ;
Moepps, B ;
Arenzana-Seisdedos, F ;
Thelen, M ;
Bachelerie, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (42) :35760-35766
[6]   Thymosin β4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair [J].
Bock-Marquette, I ;
Saxena, A ;
White, MD ;
DiMaio, JM ;
Srivastava, D .
NATURE, 2004, 432 (7016) :466-472
[7]   Hypoxia modifies the transcriptome of primary human monocytes: Modulation of novel immune-related genes and identification of CC-chemokine ligand 20 as a new hypoxia-inducible gene [J].
Bosco, Maria Carla ;
Puppo, Maura ;
Santangelo, Clara ;
Anfosso, Luca ;
Pfeffer, Ulrich ;
Fardin, Paolo ;
Battaglia, Florinda ;
Varesio, Luigi .
JOURNAL OF IMMUNOLOGY, 2006, 177 (03) :1941-1955
[8]   Mechanotransduction in bone - role of the lacuno-canalicular network [J].
Burger, EH ;
Klein-Nulend, J .
FASEB JOURNAL, 1999, 13 :S101-S112
[9]   CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment [J].
Burger, JA ;
Kipps, TJ .
BLOOD, 2006, 107 (05) :1761-1767
[10]   A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development [J].
Burns, Jennifer M. ;
Summers, Bretton C. ;
Wang, Yu ;
Melikian, Anita ;
Berahovich, Rob ;
Miao, Zhenhua ;
Penfold, Mark E. T. ;
Sunshine, Mary Jean ;
Littman, Dan R. ;
Kuo, Calvin J. ;
Wei, Kevin ;
McMaster, Brian E. ;
Wright, Kim ;
Howard, Maureen C. ;
Schall, Thomas J. .
JOURNAL OF EXPERIMENTAL MEDICINE, 2006, 203 (09) :2201-2213