Understanding hierarchical protein evolution from first principles

被引:142
作者
Dokholyan, NV [1 ]
Shakhnovich, EI [1 ]
机构
[1] Harvard Univ, Dept Chem, Cambridge, MA 02138 USA
关键词
protein evolution; energy gap model; profile solution;
D O I
10.1006/jmbi.2001.4949
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We propose a model that explains the hierarchical organization of proteins in fold families. The model, which is based on the evolutionary selection of proteins by their native state stability, reproduces patterns of amino acids conserved across protein families. Due to its dynamic nature, the model sheds light on the evolutionary time-scales. By studying the relaxation of the correlation function between consecutive mutations at a given position in proteins, we observe separation of the evolutionary time-scales: at short time intervals families of proteins with similar sequences and structures are formed, while at long time intervals the families of structurally similar proteins that have low sequence similarity are formed. We discuss the evolutionary implications of our model. We provide a "profile" solution to our model and find agreement between predicted patterns of conserved amino acids and those actually observed in nature. (C) 2001 Academic Press.
引用
收藏
页码:289 / 307
页数:19
相关论文
共 107 条
[1]   Improved design of stable and fast-folding model proteins [J].
Abkevich, VI ;
Gutin, AM ;
Shakhnovich, EI .
FOLDING & DESIGN, 1996, 1 (03) :221-230
[2]  
Abkevich VI, 1998, PROTEINS, V31, P335, DOI 10.1002/(SICI)1097-0134(19980601)31:4<335::AID-PROT1>3.3.CO
[3]  
2-C
[4]  
ABOLA EE, 1987, CRYSTALLOGRAPHIC DAT, P107
[5]  
Alberts B., 1994, MOL BIOL CELL
[6]   COORDINATED AMINO-ACID CHANGES IN HOMOLOGOUS PROTEIN FAMILIES [J].
ALTSCHUH, D ;
VERNET, T ;
BERTI, P ;
MORAS, D ;
NAGAI, K .
PROTEIN ENGINEERING, 1988, 2 (03) :193-199
[7]  
Artymiuk PJ, 1997, NATURE, V388, P33, DOI 10.1038/40310
[8]   Active barnase variants with completely random hydrophobic cores [J].
Axe, DD ;
Foster, NW ;
Fersht, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (11) :5590-5594
[9]   The three-dimensional structure of two mutants of the signal transduction protein CheY suggest its molecular activation mechanism [J].
Bellsolell, L ;
Cronet, P ;
Majolero, M ;
Serrano, L ;
Coll, M .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 257 (01) :116-128
[10]   MAGNESIUM BINDING TO THE BACTERIAL CHEMOTAXIS PROTEIN CHEY RESULTS IN LARGE CONFORMATIONAL-CHANGES INVOLVING ITS FUNCTIONAL SURFACE [J].
BELLSOLELL, L ;
PRIETO, J ;
SERRANO, L ;
COLL, M .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 238 (04) :489-495