Functional and structural roles of the glutathione-binding residues in maize (Zea mays) glutathione S-transferase I

被引:69
作者
Labrou, NE
Mello, LV
Clonis, YD
机构
[1] Agr Univ Athens, Dept Agr Biotechnol, Lab Enzyme Technol, GR-11855 Athens, Greece
[2] EMBRAPA, Genet Resources & Biotechnol, Estacao Parque Biol, BR-70770900 Brasilia, DF, Brazil
关键词
essential dynamics; herbicide detoxification; molecular dynamics; protein engineering;
D O I
10.1042/0264-6021:3580101
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The isoenzyme glutathione S-transferase (GST) I from maize (Zea mays) was cloned and expressed in Escherichia coli, and its catalytic mechanism was investigated by site-directed mutagenesis and dynamic studies. The results showed that the enzyme promotes proton dissociation from the GSH thiol and creates a thiolate anion with high nucleophilic reactivity by lowering the pK(a) of the thiol from 8.7 to 6.2. Steady-state kinetics fit well to a rapid equilibrium, random sequential Bi Bi mechanism. with intrasubunit modulation between the GSH binding site (G-site) and the electrophile binding site (H-site). The rate-limiting step of the reaction is viscosity-dependent, and thermodynamic data suggest that product release is rate-limiting. Five residues of GST I (Ser(11), His(10), Lys(11), Gln(53) and Ser(67)), which are located in the G-site, were individually replaced with alanine and their structural and functional roles in the 1-chloro-2,4-dinitrobenzene (CDNB) conjugation reaction were investigated. On the basis of steady-state kinetics, difference spectroscopy and limited proteolysis studies it is concluded that these residues: (1) contribute to the affinity of the G-site for GSH, as they are involved in side-chain interaction with GSH; (2) influence GSH thiol ionization, and thus its reactivity; (3) participate in k(eat) regulation by affecting the rate-limiting step of the reaction, and (4) in the cases of His(40), Lys(41) and Gln(53) play an important role in the structural integrity of, and probably in the flexibility of, the highly mobile short 3,,helical segment of alpha -helix 2 (residues 35-46), as shown by limited proteolysis experiments. These structural perturbations are probably transmitted to the H-site through changes in Phe(35) conformation. This accounts for the modulation of Km(CDXB) by His(40), Lys(41) and Gln(53), and also for the intrasubunit communication between the G- and If-sites. Computer simulations using CONCOORD were applied to maize GST I monomer and dimer structures, each with bound lactoylglutathione, and the results were analysed by the essential dynamics technique. Differences in dynamics were found between the monomer and the dimer simulations showing the importance of using the whole structure in dynamic analysis. The results obtained confirm that the short 3(10)-helical segment of alpha -helix 2 (residues 35-46) undergoes the most significant structural rearrangements. These rearrangements are discussed in terms of enzyme catalytic mechanism.
引用
收藏
页码:101 / 110
页数:10
相关论文
共 58 条
[1]   The role of tyrosine-9 and the C-terminal helix in the catalytic mechanism of Alpha-class glutathione S-transferases [J].
Allardyce, CS ;
McDonagh, PD ;
Lian, LY ;
Wolf, CR ;
Roberts, GCK .
BIOCHEMICAL JOURNAL, 1999, 343 :525-531
[2]   ESSENTIAL DYNAMICS OF PROTEINS [J].
AMADEI, A ;
LINSSEN, ABM ;
BERENDSEN, HJC .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04) :412-425
[3]  
[Anonymous], 1993, PROTEIN STABILITY ST
[4]   Structure, catalytic mechanism, and evolution of the glutathione transferases [J].
Armstrong, RN .
CHEMICAL RESEARCH IN TOXICOLOGY, 1997, 10 (01) :2-18
[5]   Mechanistic imperatives for the evolution of glutathione transferases [J].
Armstrong, RN .
CURRENT OPINION IN CHEMICAL BIOLOGY, 1998, 2 (05) :618-623
[6]  
BJORNESTEDT R, 1995, J MOL BIOL, V247, P765
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]  
CACCURI A, 1997, J BIOL CHEM, V274, P29681
[9]   Proton release upon glutathione binding to glutathione transferase P1-1: Kinetic analysis of a multistep glutathione binding process [J].
Caccuri, AM ;
Lo Bello, M ;
Nuccetelli, M ;
Nicotra, M ;
Rossi, P ;
Antonini, G ;
Federici, G ;
Ricci, G .
BIOCHEMISTRY, 1998, 37 (09) :3028-3034
[10]   Structural flexibility modulates the activity of human glutathione transferase P1-1 - Influence of a poor co-substrate on dynamics and kinetics of human glutathione transferase [J].
Caccuri, AM ;
Ascenzi, P ;
Antonini, G ;
Parker, MW ;
Oakley, AJ ;
Chiessi, E ;
Nuccetelli, M ;
Battistoni, A ;
Bellizia, A ;
Ricci, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (27) :16193-16198