Adipose-derived stem cells accelerate neovascularization in ischaemic diabetic skin flap via expression of hypoxia-inducible factor-1a

被引:68
作者
Gao, Weicheng [1 ]
Qiao, Xing [1 ]
Ma, Shaolin [1 ]
Cui, Lei [1 ]
机构
[1] Xinjiang Med Univ, Teaching Hosp 1, Dept Plast Surg, Urumqi 830054, Peoples R China
关键词
diabetes mellitus; adipose-derived stem cells; skin flaps; GROWTH-FACTOR GENE; SECRETORY FACTORS; VESSEL FORMATION; MOLECULAR-BASIS; STROMAL CELLS; UP-REGULATION; SURVIVAL; TISSUE; VEGF; REPAIR;
D O I
10.1111/j.1582-4934.2011.01313.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Skin flaps are frequently performed for diabetic patients in spite of countless detrimental effects of diabetes on flap survival, most of which may result from a defective response of the tissues to low oxygen tension. In this study, the authors explored the feasibility of applying human adipose-derived stem cells (ASCs) to increase the viability of random-patterned skin flaps in streptozotocin-induced diabetic mice. ASCs were isolated from the fresh human lipoaspirates and expanded ex vivo for three passages. After the elevation of caudally based random-patterned skin flaps (3 cm long and 1 cm wide), ASCs suspensions were then injected into the flap (group A). Media containing no ASCs were similarly injected as a control (group B), although nothing was injected into the flap base of mice in control group C. Flap assessments were carried out at post-operative day 7 for evaluation of flap viability. The flap survival rate of group A was significantly higher than those of groups B and C, whereas no difference was observed between groups B and C. Histological examination also demonstrated a statistically significant increase in capillary density in group A over both groups B and C. Furthermore, it was found that ASCs not only augmented the expression of vascular endothelial growth factor and hypoxia-inducible factor-1a (HIF-1a) in flap tissues from dermis of diabetes mice, but also promoted their expression in dermal fibroblasts from diabetic mice. Thus, ASCs could enhance the survival of random-patterned skin flaps in streptozotocin-induced diabetic mice via elevated expression of HIF-1a.
引用
收藏
页码:2575 / 2585
页数:11
相关论文
共 37 条
[1]   Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells [J].
Altman, Andrew M. ;
Matthias, Nadine ;
Yan, Yasheng ;
Song, Yao-Hua ;
Bai, Xiaowen ;
Chiu, Ernest S. ;
Slakey, Douglas P. ;
Alt, Eckhard U. .
BIOMATERIALS, 2008, 29 (10) :1431-1442
[2]  
Amos PJ, 2010, TISSUE ENG PT A, V16, P1595, DOI 10.1089/ten.TEA.2009.0616
[3]  
Aronson D, 2008, ADV CARDIOL, V45, P1, DOI 10.1159/000115118
[4]   Stabilization of HIF-1α is critical to improve wound healing in diabetic mice [J].
Botusan, Ileana Ruxandra ;
Sunkari, Vivekananda Gupta ;
Savu, Octavian ;
Catrina, Anca Irinel ;
Grunler, Jacob ;
Lindberg, Stina ;
Pereira, Teresa ;
Yla-Herttuala, Seppo ;
Poellinger, Lorenz ;
Brismar, Kerstin ;
Catrina, Sergiu-Bogdan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (49) :19426-19431
[5]   Cellular and molecular basis of wound healing in diabetes [J].
Brem, Harold ;
Tomic-Canic, Marjana .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (05) :1219-1222
[6]   Diabetes impairs endothelial progenitor cell-mediated blood vessel formation in response to hypoxia [J].
Capla, Jennifer M. ;
Grogan, Raymon H. ;
Callaghan, Matthew J. ;
Galiano, Robert D. ;
Tepper, Oren M. ;
Ceradini, Daniel J. ;
Gurtner, Geoffrey C. .
PLASTIC AND RECONSTRUCTIVE SURGERY, 2007, 119 (01) :59-70
[7]   Hyperglycentia regulates hypoxia-inducible factor-1α protein stability and function [J].
Catrina, SB ;
Okamoto, K ;
Pereira, T ;
Brismar, K ;
Poellinger, L .
DIABETES, 2004, 53 (12) :3226-3232
[8]   Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice [J].
Ceradini, Daniel J. ;
Yao, Dachun ;
Grogan, Raymon H. ;
Callaghan, Matthew J. ;
Edelstein, Diane ;
Brownlee, Michael ;
Gurtner, Geoffrey C. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (16) :10930-10938
[9]   Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1 [J].
Ceradini, DJ ;
Kulkarni, AR ;
Callaghan, MJ ;
Tepper, OM ;
Bastidas, N ;
Kleinman, ME ;
Capla, JM ;
Galiano, RD ;
Levine, JP ;
Gurtner, GC .
NATURE MEDICINE, 2004, 10 (08) :858-864
[10]   Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing [J].
Chen, Liwen ;
Tredget, Edward E. ;
Wu, Philip Y. G. ;
Wu, Yaojiong .
PLOS ONE, 2008, 3 (04)