Because of its large N fertiliser requirements and long growth cycle, winter oilseed rape (Brassica napus L.) is considered to expose its environment to substantial risks of N losses. Soil-crop models provide unique tools to analyse such impacts, with an accuracy that primarily relies on the simulation of crop C and N budgets. Here, we describe a model simulating the growth and development of oilseed rape that was adapted from CERES-N Maize and a previously existing rape model. In addition to its soil components, the model, called CERES-Rape, has modules for crop phenology, net photosynthesis, leaf area development and grain filling, as influenced by crop N status. A new feature compared to previous rape models is the ability to predict the crop's C and N budgets throughout its growth cycle, including losses from leaves by senescence. It also contains a mechanistic description of N translocation from vegetative parts to pods and grains after the onset of flowering. The model has been calibrated on a one-year experiment with three fertiliser N levels conducted in France, and subsequently tested on a similar experiment from Denmark for which no parameters were adjusted. In the vegetative phase, the time course of biomass and N accumulations in the various plant compartments was well simulated, with predicted values falling within one or two standard deviations from the mean in the measurements, except for the low-N treatments for which the high rates of leaf senescence could not be mimicked. After the onset of flowering, some bias appeared in the simulation of crop N uptake which impaired the predictions of final grain N yields. Simulated grain dry matter yields matched observations within +/-15% for the calibration data set, but were over-estimated by a factor of 2 for the other data set. Despite the above shortcomings, the simulation of fertiliser effects on the dynamics of crop N uptake and dry matter was judged sufficiently satisfactory to allow an investigation of N losses from rapeseed-cropped soils with the CERES-Rape model. (C) 1998 Elsevier Science B.V.