Stationary solutions of the one-dimensional nonlinear Schrodinger equation. I. Case of repulsive nonlinearity

被引:271
作者
Carr, LD [1 ]
Clark, CW
Reinhardt, WP
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[2] US Dept Commerce, Technol Adm, Natl Inst Stand & Technol, Div Electron & Opt Phys, Gaithersburg, MD 20899 USA
[3] Univ Washington, Dept Chem, Seattle, WA 98195 USA
来源
PHYSICAL REVIEW A | 2000年 / 62卷 / 06期
关键词
D O I
10.1103/PhysRevA.62.063610
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
All stationary solutions to the one-dimensional nonlinear Schrodinger equation under box and periodic boundary conditions are presented in analytic form. We consider the case of repulsive nonlinearity; in a companion paper we treat the attractive case. Our solutions take the form of stationary trains of dark or gray density-notch solitons. Real stationary states are in one-to-one correspondence with those of the linear Schrodinger equation. Complex stationary states are uniquely nonlinear, nodeless, and symmetry breaking. Our solutions apply to many physical contexts, including the Bose-Einstein condensate and optical pulses in fibers.
引用
收藏
页码:063610 / 063611
页数:10
相关论文
共 41 条
[1]  
Agrawal G, 1989, Nonlinear Fiber Optics
[2]   Direct, nondestructive observation of a bose condensate [J].
Andrews, MR ;
Mewes, MO ;
vanDruten, NJ ;
Durfee, DS ;
Kurn, DM ;
Ketterle, W .
SCIENCE, 1996, 273 (5271) :84-87
[3]   Self-stabilization of dense soliton trains in a passively mode-locked ring laser [J].
Arbel, D ;
Orenstein, M .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1999, 35 (06) :977-982
[4]  
BOWMAN F, 1961, INTRO ELLIPTIC FUNCT
[5]   Dark solitons in Bose-Einstein condensates [J].
Burger, S ;
Bongs, K ;
Dettmer, S ;
Ertmer, W ;
Sengstock, K ;
Sanpera, A ;
Shlyapnikov, GV ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (25) :5198-5201
[6]   Stationary solutions of the one-dimensional nonlinear Schrodinger equation. II. Case of attractive nonlinearity [J].
Carr, LD ;
Clark, CW ;
Reinhardt, WP .
PHYSICAL REVIEW A, 2000, 62 (06) :063611-063611
[7]  
CARR LD, CONDMAT0004287
[8]  
CIAO RY, 1993, FRONTIERS NONLINEAR, P151
[9]   A high-field trap to Bose condense caesium [J].
Close, JD ;
Zhang, WP .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 1999, 1 (04) :420-423
[10]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512