Regulation of intracellular calcium concentrations by calcium and magnesium in cardioplegic solutions protects rat neonatal myocytes from simulated ischemia

被引:12
作者
Ichiba, T [1 ]
Matsuda, N [1 ]
Takemoto, N [1 ]
Ishiguro, S [1 ]
Kuroda, H [1 ]
Mori, T [1 ]
机构
[1] Tottori Univ, Fac Med, Dept Surg, Yonago, Tottori 683, Japan
关键词
cardioplegic solution; simulated ischemia; intracellular calcium; fluo-3; cell injury; immature myocytes; calcium ion; magnesium ion;
D O I
10.1006/jmcc.1998.0676
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The effects of calcium and magnesium ions in cardioplegic solutions on cardioprotection and intracellular calcium ion handling during ischemia and reoxygenation were investigated in cultured neonatal rat myocardial cells. Myocytes were subjected to simulated ischemia for 60 min at 37 degrees C in hyperkalemic cardioplegic solutions containing various concentrations of calcium and magnesium ions, followed by 30 min of reoxygenation. For each Ca2+ concentration (0.1, 0.6, 1.2, or 2.4 mM), the Mg2+ concentration was either 0, 1.2, 8, or 16 mM. The increase in intracellular Ca2+ concentration during ischemia and reoxygenation was suppressed by the addition of magnesium ion, independent of cardioplegic Ca2+ concentration. The recovery of spontaneous contraction rate and enzyme leakage (creatine phosphokinase and lactate dehydrogenase) during both ischemia and reoxygenation correlated with the degree of inhibition of intracellular Ca2+ accumulation. However, in the 0.1 mM Ca2+ groups in which the Mg2+ concentration was greater than 8 mM, the intracellular Ca2+ concentration increased during reoxygenation in a dose-dependent fashion of Mg2+, and was associated with increased enzyme leakage. The findings suggest that in immature cardiac myocytes, the concentrations of Ca2+ and Mg2+ present in cardioplegic solutions control the intracellular Ca2+ concentration during ischemia and reoxygenation, which, in turn, influences the cardioprotective effect of the cardioplegic solution. (C) 1998 Academic Press.
引用
收藏
页码:1105 / 1114
页数:10
相关论文
共 30 条
[1]  
AGUS ZS, 1991, ANNU REV PHYSIOL, V53, P299, DOI 10.1146/annurev.physiol.53.1.299
[2]  
Anderson P A, 1989, Cardiol Clin, V7, P209
[3]   SARCOLEMMAL NA+-CA-2+ EXCHANGE ACTIVITY AND EXCHANGER IMMUNOREACTIVITY IN DEVELOPING RABBIT HEARTS [J].
ARTMAN, M .
AMERICAN JOURNAL OF PHYSIOLOGY, 1992, 263 (05) :H1506-H1513
[4]   MAGNESIUM CARDIOPLEGIA PREVENTS ACCUMULATION OF CYTOSOLIC CALCIUM IN THE ISCHEMIC MYOCARDIUM [J].
ATAKA, K ;
CHEN, D ;
MCCULLY, J ;
LEVITSKY, S ;
FEINBERG, H .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1993, 25 (12) :1387-1390
[5]   MAGNESIUM-ION IS BENEFICIAL IN HYPOTHERMIC CRYSTALLOID CARDIOPLEGIA [J].
BROWN, PS ;
HOLLAND, FW ;
PARENTEAU, GL ;
CLARK, RE .
ANNALS OF THORACIC SURGERY, 1991, 51 (03) :359-367
[6]   DEVELOPMENTAL-CHANGES IN CARDIAC MYOCYTE CALCIUM REGULATION [J].
CHIN, TK ;
FRIEDMAN, WF ;
KLITZNER, TS .
CIRCULATION RESEARCH, 1990, 67 (03) :574-579
[7]   MAGNESIUM TRANSPORT ACROSS CELL-MEMBRANES [J].
FLATMAN, PW .
JOURNAL OF MEMBRANE BIOLOGY, 1984, 80 (01) :1-14
[8]  
FRY CH, 1986, MAGNESIUM, V5, P306
[9]   SIMULTANEOUS MEASUREMENT OF INTRACELLULAR NA+ AND CA2+ DURING K+-FREE PERFUSION IN ISOLATED MYOCYTES [J].
HAYASHI, H ;
SATOH, H ;
NODA, N ;
TERADA, H ;
HIRANO, M ;
YAMASHITA, Y ;
KOBAYASHI, A ;
YAMAZAKI, N .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 266 (02) :C416-C422
[10]  
HEARSE DJ, 1978, J THORAC CARDIOV SUR, V75, P877