Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia

被引:190
作者
Obara, K [1 ]
Kuriyama, H [1 ]
Fukuda, H [1 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Biol Sci, Tokyo 1130033, Japan
关键词
D O I
10.1104/pp.125.2.615
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Differentiation into a tracheary element (TE) is a typical example of programmed cell death (PCD) in the developmental processes of vascular plants. In the PCD process the TE degrades its cellular contents and becomes a hollow corpse that serves as a water conduct. Using a zinnia (Zinnia elegans) cell culture we obtained serial observations of single living cells undergoing TE PCD by confocal laser scanning microscopy. Vital staining was performed and the relative fluorescence intensity was measured, revealing that the tonoplast of the swollen vacuole in TEs loses selective permeability of fluorescein just before its physical rupture. After the vacuole ruptured the nucleus was degraded rapidly within 10 to 20 min. No prominent chromatin condensation or nuclear fragmentation occurred in this process. Nucleoids in chloroplasts were also degraded in a similar time course to that of the nucleus. Degradations did not occur in non-TEs forced to rupture the vacuole by probenecid treatment. These results demonstrate that TE differentiation involves a unique type of PCD in which active and rapid nuclear degradation is triggered by vacuole rupture.
引用
收藏
页码:615 / 626
页数:12
相关论文
共 49 条
[1]   BEN1 and ZEN1 cDNAs encoding S1-type DNases that are associated with programmed cell death in plants [J].
Aoyagi, S ;
Sugiyama, M ;
Fukuda, H .
FEBS LETTERS, 1998, 429 (02) :134-138
[2]   EXPRESSION OF NUCLEAR AND CHLOROPLAST PHOTOSYNTHESIS-SPECIFIC GENES DURING LEAF SENESCENCE [J].
BATE, NJ ;
ROTHSTEIN, SJ ;
THOMPSON, JE .
JOURNAL OF EXPERIMENTAL BOTANY, 1991, 42 (239) :801-811
[3]   Proteinase activity during tracheary element differentiation in Zinnia mesophyll cultures [J].
Beers, EP ;
Freeman, TB .
PLANT PHYSIOLOGY, 1997, 113 (03) :873-880
[4]   Last exit: Senescence, abscission, and meristem arrest in Arabidopsis [J].
Bleecker, AB ;
Patterson, SE .
PLANT CELL, 1997, 9 (07) :1169-1179
[5]   INVITRO TRACHEARY ELEMENT FORMATION - STRUCTURAL STUDIES AND THE EFFECT OF TRI-IODOBENZOIC ACID [J].
BURGESS, J ;
LINSTEAD, P .
PLANTA, 1984, 160 (06) :481-489
[6]   ELECTRON-MICROSCOPY OF GAS SPACE (AERENCHYMA) FORMATION IN ADVENTITIOUS ROOTS OF ZEA-MAYS-L SUBJECTED TO OXYGEN SHORTAGE [J].
CAMPBELL, R ;
DREW, MC .
PLANTA, 1983, 157 (04) :350-357
[7]   TRACING TRACHEARY ELEMENT DEVELOPMENT [J].
CHASAN, R .
PLANT CELL, 1994, 6 (07) :917-919
[8]   DEVELOPMENTAL CELL-DEATH - MORPHOLOGICAL DIVERSITY AND MULTIPLE MECHANISMS [J].
CLARKE, PGH .
ANATOMY AND EMBRYOLOGY, 1990, 181 (03) :195-213
[9]  
COLE L, 1990, J CELL SCI, V96, P721
[10]   MECHANISMS AND FUNCTIONS OF CELL-DEATH [J].
ELLIS, RE ;
YUAN, JY ;
HORVITZ, HR .
ANNUAL REVIEW OF CELL BIOLOGY, 1991, 7 :663-698