Low-temperature modulation of the redox properties of the acceptor side of photosystem II:: photoprotection through reaction centre quenching of excess energy

被引:53
作者
Ivanov, AG
Sane, P
Hurry, V [1 ]
Król, M
Sveshnikov, D
Huner, NPA
Öquist, G
机构
[1] Umea Univ, Dept Plant Physiol, Umea Plant Sci Ctr, S-90187 Umea, Sweden
[2] Univ Western Ontario, Dept Biol, London, ON N6A 5B7, Canada
关键词
D O I
10.1034/j.1399-3054.2003.00225.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Although it has been well established that acclimation to low growth temperatures is strongly correlated with an increased proportion of reduced Q(A) in all photosynthetic groups, the precise mechanism controlling the redox state of Q(A) and its physiological significance in developing cold tolerance in photoautotrophs has not been fully elucidated. Our recent thermoluminescence (TL) measurements of the acceptor site of PSII have revealed that short-term exposure of the cyanobacterium Synechococcus sp. PCC 7942 to cold stress, overwintering of Scots pine (Pinus sylvestris L.), and acclimation of Arabidopsis plants to low growth temperatures, all caused a substantial shift in the characteristic T-M of S(2)Q(B)(-) recombination to lower temperatures. These changes were accompanied by much lower overall TL emission, restricted electron transfer between Q(A) and Q(B), and in Arabidopsis by a shift of the S(2)Q(A)(-)-related peak to higher temperatures. The shifts in recombination temperatures are indicative of a lower activation energy for the S(2)Q(B)(-) redox pair and a higher activation energy for the S(2)Q(A)(-) redox pair. This results in an increase in the free-energy gap between P680(+)Q(A)(-) and P680(+)Pheo(-) and a narrowing of the free energy gap between Q(A) and Q(B) electron acceptors. We propose that these effects result in an increased population of reduced Q(A) (Q(A)(-)), facilitating non-radiative P680(+)Q(A)(-) radical pair recombination within the PSII reaction centre. The proposed reaction centre quenching could be an important protective mechanism in cyanobacteria in which antenna and zeaxanthin cycle-dependent quenching are not present. In herbaceous plants, the enhanced capacity for dissipation of excess light energy via PSII reaction centre quenching following cold acclimation may complement their capacity for increased utilization of absorbed light through CO2 assimilation and carbon metabolism. During overwintering of evergreens, when photosynthesis is inhibited, PSII reaction centre quenching may complement non-photochemical quenching within the light-harvesting antenna when zeaxanthin cycle-dependent energy quenching is thermodynamically restricted by low temperatures. We suggest that PSII reaction centre quenching is a significant mechanism enabling cold-acclimated organisms to acquire increased resistance to high light.
引用
收藏
页码:376 / 383
页数:8
相关论文
共 86 条
[1]   Dependence of photosynthesis and energy dissipation activity upon growth form and light environment during the winter [J].
Adams, WW ;
Demmig-Adams, B ;
Rosenstiel, TN ;
Ebbert, V .
PHOTOSYNTHESIS RESEARCH, 2001, 67 (1-2) :51-62
[2]   Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: Influence of a new phenolic compound [J].
Allakhverdiev, SI ;
Klimov, VV ;
Carpentier, R .
BIOCHEMISTRY, 1997, 36 (14) :4149-4154
[3]   PHOTOINHIBITION OF PHOTOSYSTEM-2 - INACTIVATION, PROTEIN DAMAGE AND TURNOVER [J].
ARO, EM ;
VIRGIN, I ;
ANDERSSON, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1143 (02) :113-134
[4]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[5]   In vitro reconstitution of the activated zeaxanthin state associated with energy dissipation in plants [J].
Aspinall-O'Dea, M ;
Wentworth, M ;
Pascal, A ;
Robert, B ;
Ruban, A ;
Horton, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (25) :16331-16335
[6]   A FUNCTIONAL-MODEL FOR THE ROLE OF CYTOCHROME-B(559) IN THE PROTECTION AGAINST DONOR AND ACCEPTOR SIDE PHOTOINHIBITION [J].
BARBER, J ;
RIVAS, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (23) :10942-10946
[7]   Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites [J].
Bassi, R ;
Croce, R ;
Cugini, D ;
Sandonà, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (18) :10056-10061
[8]   QUANTITATIVE STUDY OF THE SLOW DECLINE OF CHLOROPHYLL ALPHA-FLUORESCENCE IN ISOLATED-CHLOROPLASTS [J].
BRIANTAIS, JM ;
VERNOTTE, C ;
PICAUD, M ;
KRAUSE, GH .
BIOCHIMICA ET BIOPHYSICA ACTA, 1979, 548 (01) :128-138
[9]   THE EFFECTS OF LOW-TEMPERATURE ACCLIMATION AND PHOTOINHIBITORY TREATMENTS ON PHOTOSYSTEM-2 STUDIED BY THERMOLUMINESCENCE AND FLUORESCENCE DECAY KINETICS [J].
BRIANTAIS, JM ;
DUCRUET, JM ;
HODGES, M ;
KRAUSE, GH .
PHOTOSYNTHESIS RESEARCH, 1992, 31 (01) :1-10
[10]   Energy dissipation in photosynthesis: Does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center? [J].
Bukhov, NG ;
Heber, U ;
Wiese, C ;
Shuvalov, VA .
PLANTA, 2001, 212 (5-6) :749-758