An essential GTP-binding protein functions as a regulator for differentiation in Streptomyces coelicolor

被引:100
作者
Okamoto, S [1 ]
Ochi, K [1 ]
机构
[1] Natl Food Res Inst, Tsukuba, Ibaraki 3058642, Japan
关键词
D O I
10.1046/j.1365-2958.1998.01042.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Streptomyces coelicolor obg gene, which encodes a putative GTP-binding protein of the Obg/Gtp1 family, was characterized. The obg gene was essential for viability. Introduction of multiple copies of obg into wild-type S. coelicolor suppressed aerial mycelium formation. A single amino acid substitution at any of six positions was introduced into the GTP binding site of Obg, and the mutated proteins were expressed in wild-type cells. Obg(P168-->V) exerted a more accentuated suppressive effect on aerial mycelium formation than did the wild-type Obg protein. In contrast, Obg(G171-->A) accelerated the development of aerial mycelium. These results show that Obg protein functions as a pivotal regulator for the onset of cell differentiation through its ability to bind GTP. Western analysis revealed that expression of obg is regulated in a growth phase-dependent manner, indicating a sharp decrease just after onset of aerial mycelium development or at the end of vegetative growth. Obg was a membrane-bound protein as determined by immunoelectron microscopy.
引用
收藏
页码:107 / 119
页数:13
相关论文
共 66 条
[1]   A GTP-BINDING PROTEIN OF ESCHERICHIA-COLI HAS HOMOLOGY TO YEAST RAS PROTEINS [J].
AHNN, J ;
MARCH, PE ;
TAKIFF, HE ;
INOUYE, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (23) :8849-8853
[2]   GLUCOSE REPRESSION IN STREPTOMYCES-COELICOLOR A3(2) - A LIKELY REGULATORY ROLE FOR GLUCOSE KINASE [J].
ANGELL, S ;
LEWIS, CG ;
BUTTNER, MJ ;
BIBB, MJ .
MOLECULAR AND GENERAL GENETICS, 1994, 244 (02) :135-143
[3]  
[Anonymous], TECHNIQUES IMMUNOCYT
[4]   RAS GENES [J].
BARBACID, M .
ANNUAL REVIEW OF BIOCHEMISTRY, 1987, 56 :779-827
[5]  
BOURNE HR, 1991, NATURE, V349, P117, DOI 10.1038/349117a0
[6]   THE GTPASE SUPERFAMILY - A CONSERVED SWITCH FOR DIVERSE CELL FUNCTIONS [J].
BOURNE, HR ;
SANDERS, DA ;
MCCORMICK, F .
NATURE, 1990, 348 (6297) :125-132
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   Cell cycle arrest in era GTPase mutants:: a potential growth rate-regulated checkpoint in Escherichia coli [J].
Britton, RA ;
Powell, BS ;
Dasgupta, S ;
Sun, Q ;
Margolin, W ;
Lupski, JR ;
Court, DL .
MOLECULAR MICROBIOLOGY, 1998, 27 (04) :739-750
[9]   Characterization of mutations affecting the Escherichia coli essential GTPase era that suppress two temperature-sensitive dnaG alleles [J].
Britton, RA ;
Powell, BS ;
Court, DL ;
Lupski, JR .
JOURNAL OF BACTERIOLOGY, 1997, 179 (14) :4575-4582
[10]   INITIATION OF SPORULATION IN BACILLUS-SUBTILIS IS CONTROLLED BY A MULTICOMPONENT PHOSPHORELAY [J].
BURBULYS, D ;
TRACH, KA ;
HOCH, JA .
CELL, 1991, 64 (03) :545-552