Engineering FRET constructs using CFP and YFP

被引:52
作者
Shimozono, Satoshi [1 ]
Miyawaki, Atsushi [1 ]
机构
[1] RIKEN, Inst Phys & Chem Res, Brain Sci Inst, Lab Cell Funct Dynam, Wako, Saitama 3510198, Japan
来源
FLUORESCENT PROTEINS, SECOND EDITION | 2008年 / 85卷
基金
日本科学技术振兴机构;
关键词
D O I
10.1016/S0091-679X(08)85016-9
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Fluorescence resonance energy transfer (FRET) technology has been used to develop genetically encoded fluorescent indicators for various cellular functions. Here we discuss how to engineer constructs for FRET between the cyan- and yellow-emitting variants of green fluorescent protein (GFP) from Aequorea victoria (CFP and YFP, respectively). Throughout this chapter, we stress the fact that FRET is highly sensitive to the relative orientation and distance between the donor and the acceptor. The chapter consists of two parts. First, we discuss FRET-based indicators encoded by single genes, which were developed in our laboratory. In this approach, a number of different constructs can be made for a comparative assessment of their FRET efficiencies. For example, the length and sequence of the linker between the fluorescent protein and the host protein should be optimized for each specific application. In the second part, we describe the use of long and flexible linkers for engineering FRET constructs, including an introduction to a general and efficient tool for making successful fusion proteins with long and flexible linkers. When CFP and YFP are fused through floppy linkers to two protein domains that interact with each other, the two fluorescent proteins will associate due to the weak dimerization propensity of Aequorea GFP, which results in moderate FRET. This approach has become even more powerful due to the construction of a new pair of fluorescent proteins for FRET: CyPet and YPet.
引用
收藏
页码:381 / +
页数:15
相关论文
共 18 条
[1]   Expansion of the genetic code enables design of a novel "gold'' class of green fluorescent proteins [J].
Bae, JH ;
Rubini, M ;
Jung, G ;
Wiegand, G ;
Seifert, MHJ ;
Azim, MK ;
Kim, JS ;
Zumbusch, A ;
Holak, TA ;
Moroder, L ;
Huber, R ;
Budisa, N .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 328 (05) :1071-1081
[2]   Circular permutation and receptor insertion within green fluorescent proteins [J].
Baird, GS ;
Zacharias, DA ;
Tsien, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11241-11246
[3]   *ZWISCHENMOLEKULARE ENERGIEWANDERUNG UND FLUORESZENZ [J].
FORSTER, T .
ANNALEN DER PHYSIK, 1948, 2 (1-2) :55-75
[4]   PROTEIN ENGINEERING OF ANTIBODY-BINDING SITES - RECOVERY OF SPECIFIC ACTIVITY IN AN ANTI-DIGOXIN SINGLE-CHAIN FV ANALOG PRODUCED IN ESCHERICHIA-COLI [J].
HUSTON, JS ;
LEVINSON, D ;
MUDGETTHUNTER, M ;
TAI, MS ;
NOVOTNY, J ;
MARGOLIES, MN ;
RIDGE, RJ ;
BRUCCOLERI, RE ;
HABER, E ;
CREA, R ;
OPPERMANN, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (16) :5879-5883
[5]  
Lakowicz J.R., 1999, Principles of Fluorescence Spectroscopy, P367, DOI 10.1007/978-1-4757-3061-6_13
[6]   Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein [J].
Miyawaki, A ;
Tsien, RY .
APPLICATIONS OF CHIMERIC GENES AND HYBRID PROTEINS PT B: CELL BIOLOGY AND PHYSIOLOGY, 2000, 327 :472-500
[7]   Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin [J].
Miyawaki, A ;
Llopis, J ;
Heim, R ;
McCaffery, JM ;
Adams, JA ;
Ikura, M ;
Tsien, RY .
NATURE, 1997, 388 (6645) :882-887
[8]  
Miyawaki A, 2003, NAT CELL BIOL, pS1, DOI 10.1038/ncb1031
[9]   Visualization of the spatial and temporal dynamics of intracellular signaling [J].
Miyawaki, A .
DEVELOPMENTAL CELL, 2003, 4 (03) :295-305
[10]   Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins [J].
Nagai, T ;
Yamada, S ;
Tominaga, T ;
Ichikawa, M ;
Miyawaki, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (29) :10554-10559