Coupled discontinuous and continuous Galerkin finite element methods for the depth-integrated shallow water equations

被引:32
作者
Dawson, C
Proft, J
机构
[1] Univ Texas, Texas Inst Computat & Appl Math, Ctr Subsurface Modeling C0200, Austin, TX 78712 USA
[2] Univ Marne la Vallee, CNRS UMR 8050, Lab Anal & Math Appl, CNRS, Marne La Vallee, France
[3] Ecole Natl Ponts & Chaussees, CERMICS, F-77455 Marne La Vallee 2, France
基金
美国国家科学基金会;
关键词
shallow water equations; Galerkin finite element method; discontinuous Galerkin method; coupled method;
D O I
10.1016/j.cma.2003.09.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we investigate a new approach for the two-dimensional fully non-linear depth-averaged shallow water equations by coupling continuous and discontinuous Galerkin methods. We apply a discontinuous Galerkin method to the primitive continuity and momentum equations and couple this to a continuous method discretizing the so-called "wave continuity" and momentum equation. Herein we present the formulation and derive an a priori error estimate, and demonstrate some preliminary numerical results. This work represents the culmination of a series of papers exploring coupled methods for the shallow water equations. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:289 / 318
页数:30
相关论文
共 44 条
[1]   A discontinuous Galerkin method for two-dimensional flow and transport in shallow water [J].
Aizinger, V ;
Dawson, C .
ADVANCES IN WATER RESOURCES, 2002, 25 (01) :67-84
[2]   A HIGH-RESOLUTION GODUNOV-TYPE SCHEME IN FINITE VOLUMES FOR THE 2D SHALLOW-WATER EQUATIONS [J].
ALCRUDO, F ;
GARCIANAVARRO, P .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1993, 16 (06) :489-505
[3]   A discontinuous hp finite element method for convection-diffusion problems [J].
Baumann, CE ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 175 (3-4) :311-341
[4]   hp-Version discontinuous Galerkin methods for hyperbolic conservation laws [J].
Bey, KS ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 133 (3-4) :259-286
[5]   THE INFLUENCE OF DOMAIN SIZE ON THE RESPONSE CHARACTERISTICS OF A HURRICANE STORM-SURGE MODEL [J].
BLAIN, CA ;
WESTERINK, JJ ;
LUETTICH, RA .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1994, 99 (C9) :18467-18479
[6]  
BLAIN CA, 1998, INT J NUMER METH ENG, V26, P1
[7]  
Brenner S. C., 2007, Texts Appl. Math., V15
[8]   An a priori error analysis of the local discontinuous Galerkin method for elliptic problems [J].
Castillo, P ;
Cockburn, B ;
Perugia, I ;
Shötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) :1676-1706
[9]   Finite element approximations to the system of shallow water equations, part II: Discrete-time a priori error estimates [J].
Chippada, S ;
Dawson, CN ;
Martinez-Canales, ML ;
Wheller, MF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 36 (01) :226-250
[10]   Finite element approximations to the system of shallow water equations I: Continuous-time a priori error estimates [J].
Chippada, S ;
Dawson, CN ;
Martinez, ML ;
Wheeler, MF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (02) :692-711