Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits

被引:130
作者
Bernstein, Jacob G. [2 ]
Garrity, Paul A. [1 ]
Boyden, Edward S. [2 ]
机构
[1] Brandeis Univ, Dept Biol, Volen Ctr Complex Syst, Natl Ctr Behav Gen, Waltham, MA 02454 USA
[2] MIT, McGovern Inst, MIT Media Lab, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
SYNAPTIC VESICLE MEMBRANE; LIGHT-INDUCED ACTIVATION; ION CHANNELS; REMOTE-CONTROL; MILLISECOND-TIMESCALE; NEURONAL ACTIVATION; 2-PHOTON EXCITATION; OPTICAL CONTROL; VISUAL FUNCTION; ATP SYNTHESIS;
D O I
10.1016/j.conb.2011.10.023
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In recent years, interest has grown in the ability to manipulate, in a temporally precise fashion, the electrical activity of specific neurons embedded within densely wired brain circuits, in order to reveal how specific neurons subserve behaviors and neural computations, and to open up new horizons on the clinical treatment of brain disorders. Technologies that enable temporally precise control of electrical activity of specific neurons, and not these neurons' neighbors - whose cell bodies or processes might be just tens to hundreds of nanometers away - must involve two components. First, they require as a trigger a transient pulse of energy that supports the temporal precision of the control. Second, they require a molecular sensitizer that can be expressed in specific neurons and which renders those neurons specifically responsive to the triggering energy delivered. Optogenetic tools, such as microbial opsins, can be used to activate or silence neural activity with brief pulses of light. Thermogenetic tools, such as thermosensitive TRP channels, can be used to drive neural activity downstream of increases or decreases in temperature. We here discuss the principles underlying the operation of these two recently developed, but widely used, toolboxes, as well as the directions being taken in the use and improvement of these toolboxes.
引用
收藏
页码:61 / 71
页数:11
相关论文
共 108 条
[1]   Neural substrates of awakening probed with optogenetic control of hypocretin neurons [J].
Adamantidis, Antoine R. ;
Zhang, Feng ;
Aravanis, Alexander M. ;
Deisseroth, Karl ;
De Lecea, Luis .
NATURE, 2007, 450 (7168) :420-U9
[2]   Light-Induced Rescue of Breathing after Spinal Cord Injury [J].
Alilain, Warren J. ;
Li, Xiang ;
Horn, Kevin P. ;
Dhingra, Rishi ;
Dick, Thomas E. ;
Herlitze, Stefan ;
Silver, Jerry .
JOURNAL OF NEUROSCIENCE, 2008, 28 (46) :11862-11870
[3]   Two-photon single-cell optogenetic control of neuronal activity by sculpted light [J].
Andrasfalvy, Bertalan K. ;
Zemelman, Boris V. ;
Tang, Jianyong ;
Vaziri, Alipasha .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (26) :11981-11986
[4]   An optical neural interface:: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology [J].
Aravanis, Alexander M. ;
Wang, Li-Ping ;
Zhang, Feng ;
Meltzer, Leslie A. ;
Mogri, Murtaza Z. ;
Schneider, M. Bret ;
Deisseroth, Karl .
JOURNAL OF NEURAL ENGINEERING, 2007, 4 (03) :S143-S156
[5]   In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2 [J].
Arenkiel, Benjamin R. ;
Peca, Joao ;
Davison, Ian G. ;
Feliciano, Catia ;
Deisseroth, Karl ;
Augustine, George J. ;
Ehlers, Michael D. ;
Feng, Guoping .
NEURON, 2007, 54 (02) :205-218
[6]   Optogenetic Control of Cardiac Function [J].
Arrenberg, Aristides B. ;
Stainier, Didier Y. R. ;
Baier, Herwig ;
Huisken, Jan .
SCIENCE, 2010, 330 (6006) :971-974
[7]   A FLEX switch targets channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping [J].
Atasoy, Deniz ;
Aponte, Yexica ;
Su, Helen Hong ;
Sternson, Scott M. .
JOURNAL OF NEUROSCIENCE, 2008, 28 (28) :7025-7030
[8]   Structural Guidance of the Photocycle of Channelrhodopsin-2 by an Interhelical Hydrogen Bond [J].
Bamann, Christian ;
Gueta, Ronnie ;
Kleinlogel, Sonja ;
Nagel, Georg ;
Bamberg, Ernst .
BIOCHEMISTRY, 2010, 49 (02) :267-278
[9]   Light-activated ion channels for remote control of neuronal firing [J].
Banghart, M ;
Borges, K ;
Isacoff, E ;
Trauner, D ;
Kramer, RH .
NATURE NEUROSCIENCE, 2004, 7 (12) :1381-1386
[10]  
BARKER AT, 1985, LANCET, V1, P1106