Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicago sativa):: effects on lignin composition in specific cell types

被引:105
作者
Nakashima, Jin [1 ]
Chen, Fang [1 ]
Jackson, Lisa [1 ]
Shadle, Gail [1 ]
Dixon, Richard A. [1 ]
机构
[1] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA
关键词
confocal microscopy; laser capture microdissection; lignin modification; monolignol biosynthesis; vascular elements;
D O I
10.1111/j.1469-8137.2008.02502.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Independent antisense down-regulation of 10 individual enzymes in the monolignol pathway has generated a series of otherwise isogenic alfalfa (Medicago sativa) lines with varying lignin content and composition. These plants show various visible growth phenotypes, and possess significant differences in vascular cell size and number. To better understand the phenotypic consequences of lignin modification, the distributions of lignin content and composition in stems of the various alfalfa lines at the cellular level were studied by confocal microscopy after staining for specific lignin components, and by chemical analysis of laser capture dissected tissue types. Although all antisense transgenes were driven by the same promoter with specificity for vascular, fiber and parenchyma tissues, the impact of down-regulating a specific transgene varied in the different tissue types. For example, reducing expression of ferulate 5-hydroxylase reduced accumulation of syringyl lignin in fiber and parenchyma cells, but not in vascular elements. The results support a model for cell type-specific regulation of lignin content and composition at the level of the monolignol pathway, and illustrate the use of laser capture microdissection as a new approach to spatially resolved lignin compositional analysis.
引用
收藏
页码:738 / 750
页数:13
相关论文
共 48 条
[1]   Preparative laser capture microdissection and single-pot cell wall material preparation:: a novel method for tissue-specific analysis [J].
Angeles, Guillermo ;
Berrio-Sierra, Jimmy ;
Joseleau, Jean-Paul ;
Lorimier, Philippe ;
Lefebvre, Andree ;
Ruel, Katia .
PLANTA, 2006, 224 (01) :228-232
[2]  
[Anonymous], 1998, ACS SYM SER
[3]   ALTERED LIGNIN COMPOSITION IN TRANSGENIC TOBACCO EXPRESSING O-METHYLTRANSFERASE SEQUENCES IN SENSE AND ANTISENSE ORIENTATION [J].
ATANASSOVA, R ;
FAVET, N ;
MARTZ, F ;
CHABBERT, B ;
TOLLIER, MT ;
MONTIES, B ;
FRITIG, B ;
LEGRAND, M .
PLANT JOURNAL, 1995, 8 (04) :465-477
[4]   Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility [J].
Baucher, M ;
Bernard-Vailhé, MA ;
Chabbert, B ;
Besle, JM ;
Opsomer, C ;
Van Montagu, M ;
Botterman, J .
PLANT MOLECULAR BIOLOGY, 1999, 39 (03) :437-447
[5]   Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth [J].
Besseau, Sebastien ;
Hoffmann, Laurent ;
Geoffroy, Pierrette ;
Lapierre, Catherine ;
Pollet, Brigitte ;
Legrand, Michel .
PLANT CELL, 2007, 19 (01) :148-162
[6]   Lignin biosynthesis [J].
Boerjan, W ;
Ralph, J ;
Baucher, M .
ANNUAL REVIEW OF PLANT BIOLOGY, 2003, 54 :519-546
[7]   In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels [J].
Chabannes, M ;
Ruel, K ;
Yoshinaga, A ;
Chabbert, B ;
Jauneau, A ;
Joseleau, JP ;
Boudet, AM .
PLANT JOURNAL, 2001, 28 (03) :271-282
[8]   Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants [J].
Chabannes, M ;
Barakate, A ;
Lapierre, C ;
Marita, JM ;
Ralph, J ;
Pean, M ;
Danoun, S ;
Halpin, C ;
Grima-Pettenati, J ;
Boudet, AM .
PLANT JOURNAL, 2001, 28 (03) :257-270
[9]   Biotechnology in trees: Towards improved paper pulping by lignin engineering [J].
Chen, CY ;
Baucher, M ;
Holst Christensen, J ;
Boerjan, W .
EUPHYTICA, 2001, 118 (02) :185-195
[10]   Cell-specific and conditional expression of caffeoyl-coenzyme A-3-O-methyltransferase in poplar [J].
Chen, CY ;
Meyermans, H ;
Burggraeve, B ;
De Rycke, RM ;
Inoue, K ;
De Vleesschauwer, V ;
Steenackers, M ;
Van Montagu, MC ;
Engler, GJ ;
Boerjan, WA .
PLANT PHYSIOLOGY, 2000, 123 (03) :853-867