Layered LixNiyMnyCo1-2yO2 cathodes for lithium ion batteries:: Understanding local structure via magnetic properties

被引:128
作者
Chemova, Natasha A. [1 ]
Ma, Miaorniao
Xiao, Jie
Whittingham, M. Stanley
Breger, Julien
Grey, Clare P.
机构
[1] SUNY Binghamton, Inst Mat Res, Binghamton, NY 13902 USA
[2] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
关键词
D O I
10.1021/cm0708867
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The magnetic properties of layered LiNi gamma Mn gamma Co1-2 gamma O2 (gamma = 0.5, 0.45, 0.4, and 1/3) compounds are studied in order to understand the transition metal ion distributions via their magnetic interactions. In LiNi0.5Mn0.5O2, an increase of magnetization is found below 100 K with ac magnetic Susceptibility revealing broad peaks at 96, 40, 13, and 7 K. The low-temperature neutron diffraction and heat capacity studies do not reveal long-range magnetic ordering; the magnetic component of heat capacity shows a broad peak at 10 K. This behavior is explained by assuming a nonrandom distribution of transition metals. The 96 K transition is attributed to the ordering of clusters of Ni2+ spins in the transition metal and lithium layers, which are coupled by a 180 degrees superexchange mechanism. The wide 40 K peak is explained by an increase of the cluster size due to intralayer Ni and Mn spin ordering, by analogy with antiferromagnetic ordering transitions in Li2MnO3 at 36.5 K and in NaNi0.5Mn0.5O2 at 55 K. The continuing increase of net magnetization in this temperature range indicates at least partial ferromagnetic interlayer ordering in LiNi0.5Mn0.5O2 as opposed to Li2MnO3 and NaNi0.5Mn0.5O2, which is caused by Ni2+ ions in the lithium layer. The 7-13 K anomalies are ascribed to the freezing of cluster magnetic moments. With increasing Co content, the amount of Ni2+ in the transition metal layer decreases, the cluster ordering transitions disappear, and only the spin-glass freezing is observed in LiNi0.4Mn0.4Co0.2O2 and LiNi1/3Mn1/3Co1/3O2 at 10 and 7 K, respectively. This is consistent with the lack of long-range ordering of the transition metal ions in these compounds. The evolution of the magnetic properties upon electrochemical cycling of LiNi0.5Mn0.5O2 is studied. Oxidation of Ni2+ (S = 2) to Ni3+ (S = 1/2) to Ni4+ (S = 0) is observed upon lithium removal as well as breakage of the partial magnetic ordering when 0.3 Li is removed. The latter is explained by the preferential oxidation of the Ni ions in the transition metal layers involved in the 180 degrees magnetic exchange.
引用
收藏
页码:4682 / 4693
页数:12
相关论文
共 55 条
  • [1] Structural,magnetic and electrochemical properties of LiNi0.5Mn0.5O2 as positive electrode for Li-ion batteries
    Abdel-Ghany, A.
    Zaghib, K.
    Gendron, F.
    Mauger, A.
    Julien, C. M.
    [J]. ELECTROCHIMICA ACTA, 2007, 52 (12) : 4092 - 4100
  • [2] Li de-intercalation mechanism in LiNi0.5Mn0.5O2 cathode material for Li-ion batteries
    Arachi, Y
    Kobayashi, H
    Emura, S
    Nakata, Y
    Tanaka, M
    Asai, T
    Sakaebe, H
    Tatsumi, K
    Kageyama, H
    [J]. SOLID STATE IONICS, 2005, 176 (9-10) : 895 - 903
  • [3] Structural change of Li1-xNi0.5Mn0.5O2 cathode materials for lithium-ion batteries by synchrotron radiation
    Arachi, Y
    Kobayashi, H
    Emura, S
    Nakata, Y
    Tanaka, M
    Asai, T
    [J]. CHEMISTRY LETTERS, 2003, 32 (01) : 60 - 61
  • [4] Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2
    Armstrong, A. Robert
    Holzapfel, Michael
    Novak, Petr
    Johnson, Christopher S.
    Kang, Sun-Ho
    Thackeray, Michael M.
    Bruce, Peter G.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) : 8694 - 8698
  • [5] High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3-Li[Ni1/2Mn1/2]O2 solid solution
    Bréger, J
    Jiang, M
    Dupré, N
    Meng, YS
    Shao-Horn, Y
    Ceder, G
    Grey, CP
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (09) : 2575 - 2585
  • [6] Short- and long-range order in the positive electrode material, Li(NiMn)0.5O2:: A joint X-ray and neutron diffraction, pair distribution function analysis and NMR study
    Bréger, J
    Dupré, N
    Chupas, PJ
    Lee, PL
    Proffen, T
    Parise, JB
    Grey, CP
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (20) : 7529 - 7537
  • [7] Effect of high voltage on the structure and electrochemistry of LiNi0.5Mn0.5O2:: A joint experimental and theoretical study
    Breger, Julien
    Meng, Ying S.
    Hinuma, Yoyo
    Kumar, Sundeep
    Kang, Kisuk
    Shao-Horn, Yang
    Ceder, Gerbrand
    Grey, Clare P.
    [J]. CHEMISTRY OF MATERIALS, 2006, 18 (20) : 4768 - 4781
  • [8] 6Li NMR studies of cation disorder and transition metal ordering in Li[Ni1/3Mn1/3Co1/3]O2 using ultrafast magic angle spinning
    Cahill, LS
    Yin, SC
    Samoson, A
    Heinmaa, I
    Nazar, LF
    Goward, GR
    [J]. CHEMISTRY OF MATERIALS, 2005, 17 (26) : 6560 - 6566
  • [9] Chappel E, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.132412
  • [10] Low field magnetism and cationic distribution in quasi-stoichiometric Li1-xNi1+xO2
    Chappel, E
    Nuñez-Regueiro, MD
    Chouteau, G
    Sulpice, A
    Delmas, C
    [J]. SOLID STATE COMMUNICATIONS, 2001, 119 (02) : 83 - 87