Upper and lower solutions for a homogeneous Dirichlet problem with nonlinear diffusion and the principle of linearized stability

被引:3
作者
Cantrell, RS [1 ]
Cosner, C [1 ]
机构
[1] Univ Miami, Dept Math & Comp Sci, Coral Gables, FL 33124 USA
关键词
upper and lower solutions; homogeneous Dirichlet problem; nonlinear diffusion; principle of linearized stability;
D O I
10.1216/rmjm/1021477348
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of quasilinear elliptic equations on a bounded domain subject to homogeneous Dirichlet boundary data. We establish a means of constructing upper and lower solutions in a neighborhood of a given solution to the quasilinear boundary value problem, leading to a principle of linearized stability-instability for the solution viewed as an equilibrium to the corresponding parabolic problem.
引用
收藏
页码:1229 / 1236
页数:8
相关论文
共 11 条
[2]   DYNAMIC THEORY OF QUASILINEAR PARABOLIC-SYSTEMS .3. GLOBAL EXISTENCE [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) :219-250
[3]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[4]  
Amann H., 1990, DIFFERENTIAL INTEGRA, V3, P13
[5]  
ARONSON D. G., 1975, LECT NOTES MATH, V446
[6]   DIFFUSIVE LOGISTIC EQUATIONS WITH INDEFINITE WEIGHTS - POPULATION-MODELS IN DISRUPTED ENVIRONMENTS .2. [J].
CANTRELL, RS ;
COSNER, C .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (04) :1043-1064
[7]  
CANTRELL RS, UNPUB CONDITIONAL PE
[9]  
HESS P, 1982, DYNAMICAL SYSTEMS, V2, P103
[10]  
Lunardi A., 1995, ANAL SEMIGROUPS OPTI