The intrinsic partition of unity method

被引:20
作者
Fries, Thomas-Peter [1 ]
Belytschko, Ted [1 ]
机构
[1] Northwestern Univ, Dept Engn Mech, Evanston, IL 60202 USA
关键词
D O I
10.1007/s00466-006-0142-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A method is presented which enables the global enrichment of the approximation space without introducing additional unknowns. Only one shape function per node is used. The shape functions are constructed by means of the moving least-squares method with an intrinsic basis vector and weight functions based on finite element shape functions. The enrichment is achieved through the intrinsic basis. By using polynomials in the intrinsic basis, optimal rates of convergence can be achieved even on distorted elements. Special enrichment functions can be chosen to enhance accuracy for solutions that are not polynomial in character. Results are presented which show optimal convergence on randomly distorted elements and improved accuracy for the oscillatory solution of the Helmholtz equation.
引用
收藏
页码:803 / 814
页数:12
相关论文
共 27 条
[1]  
[Anonymous], FINITE ELEMENT METHO
[2]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[3]  
2-N
[4]   FRACTURE AND CRACK-GROWTH BY ELEMENT FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
GU, L ;
LU, YY .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 1994, 2 (3A) :519-534
[5]  
Belytschko T, 2001, INT J NUMER METH ENG, V50, P993, DOI 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO
[6]  
2-M
[7]   ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (02) :229-256
[8]   Meshless methods: An overview and recent developments [J].
Belytschko, T ;
Krongauz, Y ;
Organ, D ;
Fleming, M ;
Krysl, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 139 (1-4) :3-47
[9]  
Belytschko T., 2000, Nonlinear Finite Elements for Continua and Structures
[10]   STREAMLINE UPWIND PETROV-GALERKIN FORMULATIONS FOR CONVECTION DOMINATED FLOWS WITH PARTICULAR EMPHASIS ON THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BROOKS, AN ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :199-259