Constraints on model response to greenhouse gas forcing and the role of subgrid-scale processes

被引:46
作者
Sanderson, Benjamin M. [1 ]
Knutti, R. [2 ]
Aina, T. [1 ]
Christensen, C. [1 ]
Faull, N. [1 ]
Frame, D. J. [3 ]
Ingram, W. J. [1 ,4 ]
Piani, C. [5 ]
Stainforth, D. A. [3 ]
Stone, D. A. [1 ]
Allen, M. R. [1 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, AOPP, Oxford OX1 3PU, England
[2] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[3] Univ Oxford, Environm Change Inst, Oxford OX1 3PU, England
[4] Met Off, Exeter, Devon, England
[5] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy
基金
英国自然环境研究理事会;
关键词
D O I
10.1175/2008JCLI1869.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A climate model emulator is developed using neural network techniques and trained with the data from the multithousand-member climateprediction. net perturbed physics GCM ensemble. The method recreates nonlinear interactions between model parameters, allowing a simulation of a much larger ensemble that explores model parameter space more fully. The emulated ensemble is used to search for models closest to observations over a wide range of equilibrium response to greenhouse gas forcing. The relative discrepancies of these models from observations could be used to provide a constraint on climate sensitivity. The use of annual mean or seasonal differences on top-of-atmosphere radiative fluxes as an observational error metric results in the most clearly defined minimum in error as a function of sensitivity, with consistent but less well-defined results when using the seasonal cycles of surface temperature or total precipitation. The model parameter changes necessary to achieve different values of climate sensitivity while minimizing discrepancy from observation are also considered and compared with previous studies. This information is used to propose more efficient parameter sampling strategies for future ensembles.
引用
收藏
页码:2384 / 2400
页数:17
相关论文
共 33 条
[1]   Efficiently Constraining Climate Sensitivity with Ensembles of Paleoclimate Simulations [J].
Annan, J. D. ;
Hargreaves, J. C. ;
Ohgaito, R. ;
Abe-Ouchi, A. ;
Emori, S. .
SOLA, 2005, 1 :181-184
[2]   Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter [J].
Annan, JD ;
Hargreaves, JC ;
Edwards, NR ;
Marsh, R .
OCEAN MODELLING, 2005, 8 (1-2) :135-154
[3]   Towards quantifying uncertainty in transient climate change [J].
Collins, Matthew ;
Booth, Ben B. B. ;
Harris, Glen R. ;
Murphy, James M. ;
Sexton, David M. H. ;
Webb, Mark J. .
CLIMATE DYNAMICS, 2006, 27 (2-3) :127-147
[4]   Constraining climate forecasts: The role of prior assumptions [J].
Frame, DJ ;
Booth, BBB ;
Kettleborough, JA ;
Stainforth, DA ;
Gregory, JM ;
Collins, M ;
Allen, MR .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (09) :1-5
[5]   Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM [J].
Giorgi, F ;
Francisco, R .
CLIMATE DYNAMICS, 2000, 16 (2-3) :169-182
[6]  
Grabowski WW, 2000, J CLIMATE, V13, P2306, DOI 10.1175/1520-0442(2000)013<2306:CMATTC>2.0.CO
[7]  
2
[8]  
GREGORY D, 1990, MON WEATHER REV, V118, P1483, DOI 10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO
[9]  
2
[10]  
Hagan M., 1996, Neural network design