Sensitivity to ultraviolet light (UV) is achieved by photoreceptors in the eye that contain a class of visual pigments maximally sensitive to light at wavelengths < 400 nm. It is widespread in the animal kingdom where it is used for mate choice, communication and foraging for food. UV sensitivity is not, however, a constant feature of the visual system, and in many vertebrate species, the UV-sensitive (UVS) pigment is replaced by a violet-sensitive (VS) pigment with maximal sensitivity between 410 and 435 nm. The role of protonation of the Schiff base-chromophore linkage and the mechanism for tuning of pigments into the UV is discussed in detail. Amino acid sequence analysis of vertebrate VS UVS pigments indicates that the ancestral pigment was UVS, with loss of UV sensitivity occurring separately in mammals, amphibia and birds, and subsequently regained by a single amino acid substitution in certain bird species. In contrast, no loss of UV sensitivity has occurred in the UVS pigments of insects.