Molecular mechanisms of DNA mismatch repair

被引:144
作者
Hsieh, P [1 ]
机构
[1] NIDDKD, Genet & Biochem Branch, NIH, Bethesda, MD 20892 USA
来源
MUTATION RESEARCH-DNA REPAIR | 2001年 / 486卷 / 02期
关键词
MutS proteins; mismatch repair; hereditary non-polyposis; colorectal cancer; X-ray crystallography;
D O I
10.1016/S0921-8777(01)00088-X
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
DNA mismatch repair (MMR) safeguards the integrity of the genome. In its role in postreplicative repair, this repair pathway corrects base-base and insertion/deletion (I/D) mismatches that have escaped the proofreading function of replicative polymerases. In its absence, cells assume a mutator phenotype in which the rate of spontaneous mutation is greatly elevated. The discovery that defects in mismatch repair segregate with certain cancer predisposition syndromes highlights its essential role in mutation avoidance. Recently, three-dimensional structures of MutS, a key repair protein that recognizes mismatches, have been determined by X-ray crystallography. This article provides an overview of the structural features of MutS proteins and discusses how the structural data together with biochemical and genetic studies reveal new insights into the molecular mechanisms of mismatch repair. Published by Elsevier Science B.V.
引用
收藏
页码:71 / 87
页数:17
相关论文
共 115 条
[1]   hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6 [J].
Acharya, S ;
Wilson, T ;
Gradia, S ;
Kane, MF ;
Guerrette, S ;
Marsischky, GT ;
Kolodner, R ;
Fishel, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (24) :13629-13634
[2]   Genetic and biochemical analysis of Msh2p-Msh6p: Role of ATP hydrolysis and Msh2p-Msh6p subunit interactions in mismatch base pair recognition [J].
Alani, E ;
Sokolsky, T ;
Studamire, B ;
Miret, JJ ;
Lahue, RS .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (05) :2436-2447
[3]  
Alani E, 1996, MOL CELL BIOL, V16, P5604
[4]   MutS mediates heteroduplex loop formation by a translocation mechanism [J].
Allen, DJ ;
Makhov, A ;
Grilley, M ;
Taylor, J ;
Thresher, R ;
Modrich, P ;
Griffith, JD .
EMBO JOURNAL, 1997, 16 (14) :4467-4476
[5]   Dominant negative mutator mutations in the mutL gene of Escherichia coli [J].
Aronshtam, A ;
Marinus, MG .
NUCLEIC ACIDS RESEARCH, 1996, 24 (13) :2498-2504
[6]  
AU KG, 1992, J BIOL CHEM, V267, P12142
[7]  
AYYAGARI R, 1995, MOL CELL BIOL, V15, P4420
[8]   Crystal structure and ATPase activity of MutL: Implications for DNA repair and mutagenesis [J].
Ban, C ;
Yang, W .
CELL, 1998, 95 (04) :541-552
[9]   Transformation of MutL by ATP binding and hydrolysis: A switch in DNA mismatch repair [J].
Ban, C ;
Junop, M ;
Yang, W .
CELL, 1999, 97 (01) :85-97
[10]   Structural basis for MutH activation in E-coli mismatch repair and relationship of MutH to restriction endonucleases [J].
Ban, C ;
Yang, W .
EMBO JOURNAL, 1998, 17 (05) :1526-1534