The basal ganglia: Focused selection and inhibition of competing motor programs

被引:1730
作者
Mink, JW
机构
[1] Department of Neurology, Box 8111, Washington Univ. School of Medicine, St. Louis, MO 63110
关键词
D O I
10.1016/S0301-0082(96)00042-1
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The basal ganglia comprise several nuclei in the forebrain? diencephalon, and midbrain thought to play a significant role in the control of posture and movement. It is well recognized that people with degenerative diseases of the basal ganglia suffer from rigidly held abnormal body postures, slowing of movement, involuntary movements, or a combination of these abnormalities. However, it has not been agreed just what the basal ganglia contribute to normal movement. Recent advances in knowledge of the basal ganglia circuitry, activity of basal ganglia neurons during movement, and the effect of basal ganglia lesions have led to a new hypothesis of basal ganglia function. The hypothesis states that the basal ganglia do not generate movements. Instead, when voluntary movement is generated by cerebral cortical and cerebellar mechanisms, the basal ganglia act broadly to inhibit competing motor mechanisms that would otherwise interfere with the desired movement. Simultaneously, inhibition is removed focally from the desired motor mechanisms to allow that movement to proceed. Inability to inhibit competing motor programs results in slow movements, abnormal postures and involuntary muscle activity. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:381 / 425
页数:45
相关论文
共 301 条
[1]   TOPOGRAPHICAL PROJECTIONS OF THE CEREBRAL-CORTEX TO THE SUBTHALAMIC NUCLEUS [J].
AFSHARPOUR, S .
JOURNAL OF COMPARATIVE NEUROLOGY, 1985, 236 (01) :14-28
[2]   ANALYSIS OF REPETITIVE AND NONREPETITIVE SEQUENTIAL ARM MOVEMENTS IN PATIENTS WITH PARKINSONS-DISEASE [J].
AGOSTINO, R ;
BERARDELLI, A ;
FORMICA, A ;
STOCCHI, F ;
ACCORNERO, N ;
MANFREDI, M .
MOVEMENT DISORDERS, 1994, 9 (03) :311-314
[3]   SEQUENTIAL ARM MOVEMENTS IN PATIENTS WITH PARKINSONS-DISEASE, HUNTINGTONS-DISEASE AND DYSTONIA [J].
AGOSTINO, R ;
BERARDELLI, A ;
FORMICA, A ;
ACCORNERO, N ;
MANFREDI, M .
BRAIN, 1992, 115 :1481-1495
[4]   MUSCARINIC MODULATION OF A TRANSIENT K+ CONDUCTANCE IN RAT NEOSTRIATAL NEURONS [J].
AKINS, PT ;
SURMEIER, DJ ;
KITAI, ST .
NATURE, 1990, 344 (6263) :240-242
[5]   THE FUNCTIONAL-ANATOMY OF BASAL GANGLIA DISORDERS [J].
ALBIN, RL ;
YOUNG, AB ;
PENNEY, JB .
TRENDS IN NEUROSCIENCES, 1989, 12 (10) :366-375
[6]  
ALEXANDER G, 1991, TRENDS NEUROSCI, V14, P56
[7]   PREPARATION FOR MOVEMENT - NEURAL REPRESENTATIONS OF INTENDED DIRECTION IN 3 MOTOR AREAS OF THE MONKEY [J].
ALEXANDER, GE ;
CRUTCHER, MD .
JOURNAL OF NEUROPHYSIOLOGY, 1990, 64 (01) :133-150
[8]   FUNCTIONAL ARCHITECTURE OF BASAL GANGLIA CIRCUITS - NEURAL SUBSTRATES OF PARALLEL PROCESSING [J].
ALEXANDER, GE ;
CRUTCHER, MD .
TRENDS IN NEUROSCIENCES, 1990, 13 (07) :266-271
[9]   MICROSTIMULATION OF THE PRIMATE NEOSTRIATUM .2. SOMATOTOPIC ORGANIZATION OF STRIATAL MICROEXCITABLE ZONES AND THEIR RELATION TO NEURONAL RESPONSE PROPERTIES [J].
ALEXANDER, GE ;
DELONG, MR .
JOURNAL OF NEUROPHYSIOLOGY, 1985, 53 (06) :1417-1430
[10]   PARALLEL ORGANIZATION OF FUNCTIONALLY SEGREGATED CIRCUITS LINKING BASAL GANGLIA AND CORTEX [J].
ALEXANDER, GE ;
DELONG, MR ;
STRICK, PL .
ANNUAL REVIEW OF NEUROSCIENCE, 1986, 9 :357-381