Enhancement and resetting of locomotor activity by muscle afferents

被引:109
作者
Pearson, KG [1 ]
Misiaszek, JE [1 ]
Fouad, K [1 ]
机构
[1] Univ Alberta, Dept Physiol, Edmonton, AB T6G 2H7, Canada
来源
NEURONAL MECHANISMS FOR GENERATING LOCOMOTOR ACTIVITY | 1998年 / 860卷
关键词
D O I
10.1111/j.1749-6632.1998.tb09050.x
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
The generation of the normal motor pattern for walking in mammals requires feedback from muscle proprioceptors. Two characteristics of the motor pattern particularly dependent on proprioceptive signals are (1) the magnitude of activity in knee and ankle extensor muscles and (2) the duration of extensor bursts during stance. Sensory regulation of these characteristics ensures that the revel of activity in extensor muscles during stance is appropriate for the load carried by the leg and that the swing phase is not initiated when a leg is loaded. Many different groups of afferents from flexor and extensor muscles can influence the locomotor pattern. Most attention has focused on the action of group I afferents from ankle extensors. Electrical stimulation of these afferents during extension increases the duration and the magnitude of extensor activity. The prolongation of extensor activity depends in part on excitation of the extensor half-center by group Ib afferents from Golgi tendon organs. The enhancement of the magnitude of extensor bursts is produced primarily via disynaptic and polysynaptic pathways opened only during locomotion. The involvement of the proprioceptive signals in the generation of locomotor activity means that the gains in reflex pathways must be constantly calibrated according to the biomechanical properties of the locomotor system. Alteration of these properties by weakening ankle extensor muscles has recently been found to produce compensatory changes in proprioceptive influences on the locomotor pattern.
引用
收藏
页码:203 / 215
页数:13
相关论文
共 36 条
[1]   PERIPHERAL CONTROL OF THE CATS STEP CYCLE .2. ENTRAINMENT OF THE CENTRAL PATTERN GENERATORS FOR LOCOMOTION BY SINUSOIDAL HIP MOVEMENTS DURING FICTIVE LOCOMOTION [J].
ANDERSSON, O ;
GRILLNER, S .
ACTA PHYSIOLOGICA SCANDINAVICA, 1983, 118 (03) :229-239
[2]   PERIPHERAL CONTROL OF THE CAT STEP CYCLE .1. PHASE DEPENDENT EFFECTS OF RAMP-MOVEMENTS OF THE HIP DURING FICTIVE LOCOMOTION [J].
ANDERSSON, O ;
GRILLNER, S .
ACTA PHYSIOLOGICA SCANDINAVICA, 1981, 113 (01) :89-101
[3]   Group I extensor afferents evoke disynaptic EPSPs in cat hindlimb extensor motorneurones during fictive locomotion [J].
Angel, MJ ;
Guertin, P ;
Jimenez, I ;
McCrea, DA .
JOURNAL OF PHYSIOLOGY-LONDON, 1996, 494 (03) :851-861
[4]  
[Anonymous], 1996, HDB PHYSL SECTION 12
[5]   TENDON ORGAN FIRING DURING ACTIVE MUSCLE LENGTHENING IN AWAKE, NORMALLY BEHAVING CATS [J].
APPENTENG, K ;
PROCHAZKA, A .
JOURNAL OF PHYSIOLOGY-LONDON, 1984, 353 (AUG) :81-92
[6]  
CONWAY BA, 1987, EXP BRAIN RES, V68, P643
[7]   NEURONAL MECHANISMS OF HUMAN LOCOMOTION [J].
DIETZ, V ;
SCHMIDTBLEICHER, D ;
NOTH, J .
JOURNAL OF NEUROPHYSIOLOGY, 1979, 42 (05) :1212-1222
[8]   INHIBITION OF FLEXOR BURST GENERATION BY LOADING ANKLE EXTENSOR MUSCLES IN WALKING CATS [J].
DUYSENS, J ;
PEARSON, KG .
BRAIN RESEARCH, 1980, 187 (02) :321-332
[9]  
FORSSBERG H, 1985, EXP BRAIN RES, V57, P480
[10]  
FORSSBERG H, 1991, LOCOMOTOR NEURAL MEC, P313