From dynamic to static large deviations in boundary driven exclusion particle systems

被引:21
作者
Bodineau, T [1 ]
Giacomin, G [1 ]
机构
[1] Univ Paris 07, Dept Math, F-75251 Paris 05, France
关键词
particle systems; exclusion process; open systems; steady states; large deviations; hydrodynamic limit; Freidlin-Wentzell approach;
D O I
10.1016/j.spa.2003.10.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the large deviations for the stationary measures associated to a boundary driven symmetric simple exclusion process. Starting from the large deviations for the hydrodynamics and following the Freidlin and Wentzell's strategy, we prove that the rate function is given by the quasi-potential of the Freidlin and Wentzell theory. This result is motivated by the recent developments on the non-equilibrium stationary measures by Derrida et al. (J. Statist. Phys. 107 (2002) 599) and the more closely related dynamical approach by Bertini et al. (J. Statist. Phys. 107 (2002) 635). (C) 2003 Elsevier B.V.. All rights reserved.
引用
收藏
页码:67 / 81
页数:15
相关论文
共 15 条
[1]   Large deviations for the boundary driven symmetric simple exclusion process [J].
Bertini, L ;
De Sole, A ;
Gabrielli, D ;
Jona-Lasinio, G ;
Landim, C .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2003, 6 (03) :231-267
[2]   Macroscopic fluctuation theory for stationary non-equilibrium states [J].
Bertini, L ;
De Sole, A ;
Gabrielli, D ;
Jona-Lasinio, G ;
Landim, C .
JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (3-4) :635-675
[3]  
DEMASI A, 1982, J STAT PHYS, V29, P81, DOI 10.1007/BF01008249
[4]   Exact large deviation functional of a stationary open driven diffusive system: The asymmetric exclusion process [J].
Derrida, B ;
Lebowitz, JL ;
Speer, ER .
JOURNAL OF STATISTICAL PHYSICS, 2003, 110 (3-6) :775-810
[5]   Large deviation of the density profile in the steady state of the open symmetric simple exclusion process [J].
Derrida, B ;
Lebowitz, JL ;
Speer, ER .
JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (3-4) :599-634
[6]  
DEUSCHEL JD, 1989, SERIES PURE APPL MAT, V137
[7]   HYDRODYNAMICS OF STATIONARY NONEQUILIBRIUM STATES FOR SOME STOCHASTIC LATTICE GAS MODELS [J].
EYINK, G ;
LEBOWITZ, JL ;
SPOHN, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) :253-283
[8]   LATTICE GAS MODELS IN CONTACT WITH STOCHASTIC RESERVOIRS - LOCAL EQUILIBRIUM AND RELAXATION TO THE STEADY-STATE [J].
EYINK, G ;
LEBOWITZ, JL ;
SPOHN, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 140 (01) :119-131
[9]  
FREIDLIN MI, 1998, GRUND MATH WISS, V260, P1
[10]  
KIPNIS C, 1995, ANN I H POINCARE-PR, V31, P191