Effect of altitude and latitude on surface air temperature across the Qinghai-Tibet Plateau

被引:51
作者
Wang Keli [1 ]
Sun Jia [1 ,3 ]
Cheng Guodong [1 ,2 ]
Jiang Hao [1 ]
机构
[1] Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Peoples R China
[2] Natl Nat Sci Fdn China, Beijing 100085, Peoples R China
[3] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Qinghai-Tibet Plateau; Surface air temperature; Vertical lapse rate; Altitude; Latitude;
D O I
10.1007/s11629-011-1090-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961-2003 across the Qinghai-Tibet Plateau. The results show that temperature variations not only depend on altitude but also latitude, and there is a gradual decrease in temperature with the increasing altitude and latitude. The overall trend for the vertical temperature lapse rate for the whole plateau is approximately linear. Three methods, namely multivariate composite analysis, simple correlation and traditional stepwise regression, were applied to analyze these three correlations. The results assessed with the first method are well matched to those with the latter two methods. The apparent mean annual near-surface lapse rate is -4.8 A degrees C /km and the latitudinal effect is -0.87 A degrees C /(o)latitude. In summer, the altitude influences the temperature variations more significantly with a July lapse rate of -4.3A degrees C /km and the effect of latitude is only -0.28A degrees C /(o)latitude. In winter, the reverse happens. The temperature decrease is mainly due to the increase in latitude. The mean January lapse rate is -5.0A degrees C /km, while the effect of latitude is -1.51A degrees C /(o)latitude. Comparative analysis for pairs of adjacent stations shows that at a small spatial scale the difference in altitude is the dominant factor affecting differences in mean annual near-surface air temperature, aided to some extent by differences of latitude. In contrast, the lapse rate in a small area is greater than the overall mean value for the Qinghai-Tibet Plateau (5 to 13A degrees C /km). An increasing trend has been detected for the surface lapse rate with increases in altitude. The temperature difference has obvious seasonal variations, and the trends for the southern group of stations (south of 33A degrees latitude) and for the more northerly group are opposite, mainly because of the differences in seasonal variation at low altitudes. For yearly changes, the temperature for high-altitude stations occurs earlier clearly. Temperature datasets at high altitude stations are well-correlated, and those in Nanjing were lagged for 1 year but less for contemporaneous correlations. The slope of linear trendline of temperature change for available years is clearly related to altitude, and the amplitude of temperature variation is enlarged by high altitude. The change effect in near-surface lapse rate at the varying altitude is approximately 1.0A degrees C /km on the rate of warming over a hundred-year period.
引用
收藏
页码:808 / 816
页数:9
相关论文
共 17 条
[1]  
[Anonymous], 2002, MATH METHOD MODERN G
[2]  
[Anonymous], 1998, PLATEAU METEOROLOGY
[3]  
*CHIN MET ADM, 2003, GROUD MET OBS CRIT, P35
[4]  
FU BP, 1996, CLIMATIC RESOURCES T, P132
[5]  
FU BP, 1983, MOUNTAIN CLIMATE, P114
[6]  
Huang Zhongyan, 1994, MOUNTAIN RES, V12, P32
[7]  
Li QY., 2006, J SHIHEZI U NATURAL, V24, P719, DOI DOI 10.13880/J.CNKI.65-1174/N.2006.06.016
[8]  
[李生辰 LI Shengchen], 2006, [中国沙漠, Journal of Desert Research], V26, P27
[9]  
[李新 Li Xin], 2003, [高原气象, Plateau Meteorology], V22, P565
[10]  
LIN ZG, 1984, C P MOUNTAIN CLIMATE