Density-transition scale at quasiperpendicular collisionless shocks

被引:74
作者
Bale, SD [1 ]
Mozer, FS
Horbury, TS
机构
[1] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England
关键词
D O I
10.1103/PhysRevLett.91.265004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Measurements of a spacecraft floating potential, on the four Cluster spacecraft, are used as a proxy for electron plasma density to study, for the first time, the macroscopic density transition scale at 98 crossings of the quasiperpendicular terrestrial bow shock. A timing analysis gives shock speeds and normals; the shock speed is used to convert the temporal measurement to a spatial one. A hyperbolic tangent function is fitted to each density transition, which captures the main shock transition, but not overshoot or undershoot nor foot features. We find that, at a low Mach number M, the density transition is consistent with both ion inertial scales c/omega(pi) and convected gyroradii v(sh,n)/Omega(ci,2), while at Mgreater than or equal to4-5 only the convected gyroradius is the preferred scale for the shock density transition and takes the value Lapproximate to0.4v(sh,n)/Omega(ci,2).
引用
收藏
页数:4
相关论文
共 16 条
[1]  
[Anonymous], 1970, INTRO PHYS SPACE
[2]  
Balikhin M, 1995, ADV SPACE RES, V15, P247, DOI 10.1016/0273-1177(94)00105-A
[3]   The Cluster Magnetic Field Investigation:: overview of in-flight performance and initial results [J].
Balogh, A ;
Carr, CM ;
Acuña, MH ;
Dunlop, MW ;
Beek, TJ ;
Brown, P ;
Fornacon, KH ;
Georgescu, E ;
Glassmeier, KH ;
Harris, J ;
Musmann, G ;
Oddy, T ;
Schwingenschuh, K .
ANNALES GEOPHYSICAE, 2001, 19 (10-12) :1207-1217
[4]   DISSIPATION DISCONTINUITIES IN HYDROMAGNETIC SHOCK WAVES [J].
CORONITI, FV .
JOURNAL OF PLASMA PHYSICS, 1970, 4 :265-&
[5]   The electric field and wave experiment for the Cluster mission [J].
Gustafsson, G ;
Bostrom, R ;
Holback, B ;
Holmgren, G ;
Lundgren, A ;
Stasiewicz, K ;
Ahlen, L ;
Mozer, FS ;
Pankow, D ;
Harvey, P ;
Berg, P ;
Ulrich, R ;
Pedersen, A ;
Schmidt, R ;
Butler, A ;
Fransen, AWC ;
Klinge, D ;
Thomsen, M ;
Falthammar, CG ;
Lindqvist, PA ;
Christenson, S ;
Holtet, J ;
Lybekk, B ;
Sten, TA ;
Tanskanen, P ;
Lappalainen, K ;
Wygant, J .
SPACE SCIENCE REVIEWS, 1997, 79 (1-2) :137-156
[6]   Nonthermal electrons at high Mach number shocks: Electron shock surfing acceleration [J].
Hoshino, M ;
Shimada, N .
ASTROPHYSICAL JOURNAL, 2002, 572 (02) :880-887
[7]   SHOCK STRUCTURE IN CLASSICAL MAGNETOHYDRODYNAMICS [J].
KENNEL, CF .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1988, 93 (A8) :8545-8557
[8]   Pickup ion energization by shock surfing [J].
Lee, MA ;
Shapiro, VD ;
Sagdeev, RZ .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1996, 101 (A3) :4777-4789
[9]   THE STRUCTURE OF MAGNETO-HYDRODYNAMIC SHOCK WAVES [J].
MARSHALL, W .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1955, 233 (1194) :367-376
[10]   SHOCK OVERSHOOTS REVISITED [J].
MELLOTT, MM ;
LIVESEY, WA .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1987, 92 (A12) :13661-13665