Brassinosteroid-mediated stress responses

被引:452
作者
Krishna, P [1 ]
机构
[1] Univ Western Ontario, Dept Biol, London, ON N6A 5B7, Canada
关键词
brassinosteroid; hormone; environmental stress; stress responses; thermotolerance; disease resistance;
D O I
10.1007/s00344-003-0058-z
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Brassinosteroids (BRs) are a group of naturally occurring plant steroidal compounds with wide-ranging biological activity that offer the unique possibility of increasing crop yields through both changing plant metabolism and protecting plants from environmental stresses. In recent years, genetic and biochemical studies have established an essential role for BRs in plant development, and on this basis BRs have been given the stature of a phytohormone. A remarkable feature of BRs is their potential to increase resistance in plants to a wide spectrum of stresses, such as low and high temperatures, drought, high salt, and pathogen attack. Despite this, only a few studies aimed at understanding the mechanism by which BRs promote stress resistance have been undertaken. Studies of the BR signaling pathway and BR gene-regulating properties indicate that there is cross-talk between BRs and other hormones, including those with established roles in plant defense responses such as abscisic acid, jasmonic acid, and ethylene. Recent studies aimed at understanding how BRs modulate stress responses suggest that complex molecular changes underlie BR-induced stress tolerance in plants. Analyses of these changes should generate exciting results in the future and clarify whether the ability of BRs to increase plant resistance to a range of stresses lies in the complex interactions of BRs with other hormones. Future studies should also elucidate if BRI1, an essential component of the BR receptor, directly participates in stress response signaling through interactions with ligands and proteins involved in plant defense responses.
引用
收藏
页码:289 / 297
页数:9
相关论文
共 58 条
[1]   Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis [J].
Abrahám, E ;
Rigó, G ;
Székely, G ;
Nagy, R ;
Koncz, C ;
Szabados, L .
PLANT MOLECULAR BIOLOGY, 2003, 51 (03) :363-372
[2]   Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.) [J].
Anuradha, S ;
Rao, SSS .
PLANT GROWTH REGULATION, 2001, 33 (02) :151-153
[3]   Control of specific gene expression by gibberellin and brassinosteroid [J].
Bouquin, T ;
Meier, C ;
Foster, R ;
Nielsen, ME ;
Mundy, J .
PLANT PHYSIOLOGY, 2001, 127 (02) :450-458
[4]   AQUAPORINS - WATER CHANNEL PROTEINS OF PLANT AND ANIMAL-CELLS [J].
CHRISPEELS, MJ ;
AGRE, P .
TRENDS IN BIOCHEMICAL SCIENCES, 1994, 19 (10) :421-425
[5]   Brassinosteroid signal transduction: Clarifying the pathway from ligand perception to gene expression [J].
Clouse, SD .
MOLECULAR CELL, 2002, 10 (05) :973-982
[6]   Brassinosteroids: Essential regulators of plant growth and development [J].
Clouse, SD ;
Sasse, JM .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1998, 49 :427-451
[7]  
CUTLER HG, 1991, ACS SYM SER, V474, P334
[8]   Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress [J].
Dhaubhadel, S ;
Browning, KS ;
Gallie, DR ;
Krishna, P .
PLANT JOURNAL, 2002, 29 (06) :681-691
[9]   Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings [J].
Dhaubhadel, S ;
Chaudhary, S ;
Dobinson, KF ;
Krishna, P .
PLANT MOLECULAR BIOLOGY, 1999, 40 (02) :333-342
[10]  
Friedrichsen DM, 2002, GENETICS, V162, P1445