Gait analysis for human identification through manifold learning and HMM

被引:53
作者
Cheng, Ming-Hsu [1 ]
Ho, Meng-Fen [1 ,2 ]
Huang, Chung-Lin [1 ,3 ]
机构
[1] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu, Taiwan
[2] Hsiuping Inst Technol, Dept Elect Engn, Taichung, Taiwan
[3] Fo Guang Univ, Dept Informat, Ilan, Taiwan
关键词
gait analysis; nonlinear dimension reduction (NLDR); Gaussian process latent variable model (GP-LVM); manifold learning; Hidden Markov model (HMM);
D O I
10.1016/j.patcog.2007.11.021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the increasing demands of visual surveillance systems, human identification at a distance has gained more attention from the researchers recently. Gait analysis can be used as an unobtrusive biometric measure to identify people at a distance without any attention of the human subjects. We propose a novel effective method for both automatic viewpoint and person identification by using only the silhouette sequence of the gait. The gait silhouettes are nonlinearly transformed into low-dimensional embedding by Gaussian process latent variable model (GPLVM), and the temporal dynamics of the gait sequences are modeled by hidden Markov models (HMMs). The experimental results show that our method has higher recognition rate than the other methods. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2541 / 2553
页数:13
相关论文
共 28 条
[1]  
BENABDELKADER C, 2001, P INT C AUD VID BAS, P284
[2]  
Boulgouris NV, 2004, IEEE IMAGE PROC, P857
[3]   Silhouette-based human identification from body shape and gait [J].
Collins, RT ;
Gross, R ;
Shi, JB .
FIFTH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, PROCEEDINGS, 2002, :366-371
[4]  
Cox T. F., 1994, MULTIDIMENSIONAL SCA
[5]  
Cunado D, 1997, P INT C AUD VID BAS, P95
[6]   Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [J].
Elgammal, A ;
Duraiswami, R ;
Harwood, D ;
Davis, LS .
PROCEEDINGS OF THE IEEE, 2002, 90 (07) :1151-1163
[7]  
Elgammal A., 2004, 2 INT WORKSH GEN MOD, P1
[8]  
FIDALEO D, 2003, ACM SIGMM MULT BIOM
[9]  
FOSTER J, 2001, P 3 INT C AUD VID BA, P312
[10]  
GROCHOW K, 2004, ACM COMPUTER GRAPHIC