Bifurcation Thresholds in an SIR Model with Information-Dependent Vaccination

被引:47
作者
d'Onofrio, A.
Manfredi, P. [3 ]
Salinelli, E. [1 ,2 ]
机构
[1] European Inst Oncol, Div Epidemiol & Biostat, I-20141 Milan, Italy
[2] Univ Piemonte Orientale, Dipartimento Sci Econ & Metodi Quantitat, I-28100 Novara, Italy
[3] Univ Pisa, Dipartimento Stat & Matemat Applicata Econ, I-5612 Pisa, Italy
关键词
SIR epidemiological models; information-dependent vaccination; stability; Hopf bifurcations;
D O I
10.1051/mmnp:2008009
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Simple epidemiological models with information dependent vaccination functions can generate sustained oscillations via Hopf bifurcation of the endemic state. The onset of these oscillations depend on the shape of the vaccination function. A "global" approach is used to characterize the instability condition and identify classes of functions that always lead to stability/instability. The analysis allows the identification of an analytically determined "threshold vaccination function" having a simple interpretation: coverage functions lying always above the threshold always lead to oscillations, whereas coverage functions always below never lead to instability.
引用
收藏
页码:26 / 43
页数:18
相关论文
共 15 条
[1]  
[Anonymous], 1998, INFECT DIS HUMANS DY
[2]  
DONOFRIO A, 2006, THEORETICAL IN PRESS
[3]  
Guckenheimer J., 2013, APPL MATH SCI, V42, DOI 10.1007/978-1-4612-1140-2
[4]  
Hale J. K., 1969, Ordinary differential equations
[5]  
LIU WM, 1993, J MATH BIOL, V31, P487, DOI 10.1007/BF00173888
[6]   Impact of thimerosal-related changes in hepatitis B vaccine birth-dose recommendations on childhood vaccination coverage [J].
Luman, ET ;
Fiore, AE ;
Strine, TW ;
Barker, LE .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2004, 291 (19) :2351-2358
[7]   To vaccinate or not to vaccinate-that is the question: why are some mothers opposed to giving their infants hepatitis B vaccine? [J].
Maayan-Metzger, A ;
Kedem-Friedrich, P ;
Kuint, J .
VACCINE, 2005, 23 (16) :1941-1948
[8]  
MacDonald N., 1989, BIOL DELAY SYSTEMS
[9]  
Murray J.D, 1989, Mathematical Biology, V19
[10]  
RELUGA TC, 2006, MATH BIOSCI IN PRESS