Silicone as a binder in composite electrolytes

被引:22
作者
Inada, T
Takada, K
Kajiyama, A
Sasaki, H
Kondo, S
Watanabe, M
Murayama, M
Kanno, R
机构
[1] Natl Inst Mat Sci, Adv Mat Lab, Tsukuba, Ibaraki 3050044, Japan
[2] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Dept Elect Chem, Midori Ku, Yokohama, Kanagawa 2268502, Japan
关键词
polymer composite; oxysulfide glass; thio-LISICON; solid electrolytes; lithium battery;
D O I
10.1016/S0378-7753(03)00293-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A liquid silicone was used as a binder to make composite solid electrolytes from lithium-ion conductive inorganic solid electrolytes (ISEs): an oxysulfide glass, 0.01 Li3PO4-0.63Li(2)S-0.36SiS(2) and/or a lithium germanium thio-phosphate, Li3.25Ge0.25P0.75S4. Ionic conductivities of the composites were of the order of 10(-4) Scm(-1), even when the silicone was enriched to 10% (v/v). On the other hand, the composite with styrene-butadiene block co-polymer (SBR) or polypropylene oxide-polyethylene oxide (PO-EO) co-polymer as binder showed much lower conductivity. In the composite electrolyte, the silicone rubber must partly cover the surface of the ISE particles because the composite electrolyte is molded before the vulcanization of the fluid liquid silicone; and thus, it must rarely interfere with the conduction between the ISE particles. Hydrocarbons were found to be suitable in the preparation process of the composite solid electrolyte (CSE). (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:948 / 950
页数:3
相关论文
共 15 条
[1]   RUBBERY SOLID ELECTROLYTES WITH DOMINANT CATIONIC TRANSPORT AND HIGH AMBIENT CONDUCTIVITY [J].
ANGELL, CA ;
LIU, C ;
SANCHEZ, E .
NATURE, 1993, 362 (6416) :137-139
[2]   SYNTHESIS AND ELECTROCHEMICAL PROPERTIES OF LITHIUM ION CONDUCTIVE GLASS, LI3PO4-LI2S-SIS2 [J].
AOTANI, N ;
IWAMOTO, K ;
TAKADA, K ;
KONDO, S .
SOLID STATE IONICS, 1994, 68 (1-2) :35-39
[3]   HOMOGENEOUS CATALYSIS .2. MECHANISM OF HYDROSILATION OF OLEFINS CATALYZED BY GROUP 8 METAL COMPLEXES [J].
CHALK, AJ ;
HARROD, JF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1965, 87 (01) :16-&
[4]   Si-29 and P-31 MAS-NMR spectra of Li2S-SiS3-Li3PO4 rapidly quenched glasses [J].
Hirai, K ;
Tatsumisago, M ;
Takahashi, M ;
Minami, T .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1996, 79 (02) :349-352
[5]   Fabrications and properties of composite solid-state electrolytes [J].
Inada, T ;
Takada, K ;
Kajiyama, A ;
Kouguchi, M ;
Sasaki, H ;
Kondo, S ;
Watanabe, M ;
Murayama, M ;
Kanno, R .
SOLID STATE IONICS, 2003, 158 (3-4) :275-280
[6]  
INADA T, 2001, P 27 S SOL STAT ION, P250
[7]   Lithium ionic conductor thio-LISICON -: The Li2S-GeS2-P2S5 system [J].
Kanno, R ;
Maruyama, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (07) :A742-A746
[8]   A HIGHLY CONDUCTIVE LI+-GLASS SYSTEM - (1-X)(0.4SIS2-0.6LI2S)-XLIL [J].
KENNEDY, JH ;
YANG, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1986, 133 (11) :2437-2438
[9]   IMPROVED STABILITY FOR THE SIS2-P2S5-LI2S-LII GLASS SYSTEM [J].
KENNEDY, JH ;
ZHANG, ZM .
SOLID STATE IONICS, 1988, 28 :726-728
[10]   GLASS-FORMING REGION AND STRUCTURE IN SIS2-LI2S-LIBR, SIS2-LI2S-LII [J].
KENNEDY, JH ;
YANG, Y .
JOURNAL OF SOLID STATE CHEMISTRY, 1987, 69 (02) :252-257