Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways

被引:222
作者
Maruyama-Nakashita, A
Inoue, E
Watanabe-Takahashi, A
Yarnaya, T
Takahashi, H
机构
[1] RIKEN, Plant Sci Ctr, Tsurumi Ku, Yokohama, Kanagawa 2300045, Japan
[2] Tohoku Univ, Grad Sch Agr Sci, Aoba Ku, Sendai, Miyagi 9818555, Japan
关键词
D O I
10.1104/pp.102.019802
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Sulfate is a macronutrient required for cell growth and development. Arabidopsis has two high-affinity sulfate transporters (SULTR1;1 and SULTR1;2) that represent the sulfate uptake activities at the root surface. Sulfur limitation (-S) response relevant to the function of SULTR1;2 was elucidated in this study. We have isolated a novel T-DNA insertion allele defective in the SULTRI;2 sulfate transporter. This mutant, sel1-10, is allelic with the sell mutants identified previously in a screen for increased tolerance to selenate, a toxic analog of sulfate (Shibagaki et al., 2002). The abundance of SULTR1;1 mRNA was significantly increased in the sel1-10 mutant; however, this compensatory up-regulation of SULTRI;l was not sufficient to restore the growth. The sulfate content of the mutant was 10% to 20% of the wild type, suggesting that induction of SULTRI;l is not fully complementing the function of SULTR1;2 and that SULTR1;2 serves as the major facilitator for the acquisition of sulfate in Arabidopsis roots. Transcriptome analysis of approximately 8,000 Arabidopsis genes in the sel1-10 mutant suggested that dysfunction of the SULTR1;2 transporter can mimic general -S symptoms. Hierarchal clustering of sulfur responsive genes in the wild type and mutant indicated that sulfate uptake, reductive sulfur assimilation, and turnover of secondary sulfur metabolites are activated under -S. The profiles of -S-responsive genes further suggested induction of genes that may alleviate oxidative damage and generation of reactive oxygen species caused by shortage of glutathione.
引用
收藏
页码:597 / 605
页数:9
相关论文
共 35 条
[1]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[2]   Biosynthesis and function of the sulfolipid sulfoquinovosyl diacylglycerol [J].
Benning, C .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1998, 49 :53-75
[3]   Regulation of the plant-type 5′-adenylyl sulfate reductase by oxidative stress [J].
Bick, JA ;
Setterdahl, AT ;
Knaff, DB ;
Chen, YC ;
Pitcher, LH ;
Zilinskas, BA ;
Leustek, T .
BIOCHEMISTRY, 2001, 40 (30) :9040-9048
[4]   Biosynthesis and action of jasmonates in plants [J].
Creelman, RA ;
Mullet, JE .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1997, 48 :355-381
[5]   Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions [J].
Grossman, A ;
Takahashi, H .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 2001, 52 :163-210
[6]   A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein [J].
Gustavsson, N ;
Kokke, BP ;
Härndahl, U ;
Silow, M ;
Bechtold, U ;
Poghosyan, Z ;
Murphy, D ;
Boelens, WC ;
Sundby, C .
PLANT JOURNAL, 2002, 29 (05) :545-553
[7]   Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and ''APS reductase'' activity [J].
GutierrezMarcos, JF ;
Roberts, MA ;
Campbell, EI ;
Wray, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :13377-13382
[8]   Arabidopsis polyamine biosynthesis:: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity [J].
Hanfrey, C ;
Sommer, S ;
Mayer, MJ ;
Burtin, D ;
Michael, AJ .
PLANT JOURNAL, 2001, 27 (06) :551-560
[9]   ISOLATION OF AN ARABIDOPSIS-THALIANA MUTANT, MTO1, THAT OVERACCUMULATES SOLUBLE METHIONINE - TEMPORAL AND SPATIAL PATTERNS OF SOLUBLE METHIONINE ACCUMULATION [J].
INABA, K ;
FUJIWARA, T ;
HAYASHI, H ;
CHINO, M ;
KOMEDA, Y ;
NAITO, S .
PLANT PHYSIOLOGY, 1994, 104 (03) :881-887
[10]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815