Adiabatic preparation of topological order

被引:94
作者
Hamma, Alioscia [1 ]
Lidar, Daniel A. [1 ,2 ]
机构
[1] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Elect Engn & Phys, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.100.030502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Topological order characterizes those phases of matter that defy a description in terms of symmetry and cannot be distinguished in terms of local order parameters. Here we show that a system of n spins forming a lattice on a Riemann surface can undergo a second order quantum phase transition between a spin-polarized phase and a string-net condensed phase. This is an example of a quantum phase transition between magnetic and topological order. We furthermore show how to prepare the topologically ordered phase through adiabatic evolution in a time that is upper bounded by O(root n). This provides a physically plausible method for constructing and initializing a topological quantum memory.
引用
收藏
页数:4
相关论文
共 27 条
[1]   Topological order and conformal quantum critical points [J].
Ardonne, E ;
Fendley, P ;
Fradkin, E .
ANNALS OF PHYSICS, 2004, 310 (02) :493-551
[2]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[3]  
CATELNOVO C, ARXIV07072084
[4]   Topological quantum memory [J].
Dennis, E ;
Kitaev, A ;
Landahl, A ;
Preskill, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) :4452-4505
[5]   General entanglement scaling laws from time evolution [J].
Eisert, Jens ;
Osborne, Tobias J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (15)
[6]   A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem [J].
Farhi, E ;
Goldstone, J ;
Gutmann, S ;
Lapan, J ;
Lundgren, A ;
Preda, D .
SCIENCE, 2001, 292 (5516) :472-476
[7]  
Freedman MH, 2003, B AM MATH SOC, V40, P31
[8]   P/NP, and the quantum field computer [J].
Freedman, MH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (01) :98-101
[9]   Elementary exponential error estimates for the adiabatic approximation [J].
Hagedorn, GA ;
Joye, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 267 (01) :235-246
[10]   Finite-size scaling in the transverse Ising model on a square lattice [J].
Hamer, CJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (38) :6683-6698